
PHP
Arrays

Single, Multi-dimensional, Associative and
Object Arrays in PHP 7
—
Steve Prettyman

PHP Arrays
Single, Multi-dimensional, Associative

and Object Arrays in PHP 7

Steve Prettyman

PHP Arrays: Single, Multi-dimensional, Associative and Object Arrays in PHP 7

Steve Prettyman					
Key West, Florida, USA			

ISBN-13 (pbk): 978-1-4842-2555-4			 ISBN-13 (electronic): 978-1-4842-2556-1
DOI 10.1007/978-1-4842-2556-1

Library of Congress Control Number: 2016961720

Copyright © 2017 by Steve Prettyman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Tri Phan
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham,
Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Brendan Frost
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover image: Designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/. Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

Printed on acid-free paper

This book is dedicated to my wife, Beverly. Thank you for over 20 years of love and support;
without you, this book would not be possible.

v

Contents at a Glance

About the Author�� xi

About the Technical Reviewer�� xiii

Introduction��xv

■■Chapter 1: PHP 7 Basics��� 1

■■Chapter 2: Simple Arrays��� 27

■■Chapter 3: Multidimensional Arrays��� 41

■■Chapter 4: Associative and Object Arrays�� 57

■■Chapter 5: PHP Functions—Changing, Splitting, Slicing, and Sorting Arrays������������75

■■Chapter 6: PHP Functions—Comparing and Merging Arrays����������������������������� 101

■■Chapter 7: PHP Functions—Searching, Traversing, and Displaying Arrays������� 123

■■Appendix A: Case Study—Playing Checkers�� 143

Index�� 159

vii

Contents

About the Author�� xi

About the Technical Reviewer�� xiii

Introduction��xv

■■Chapter 1: PHP 7 Basics��� 1

1.1 � Installation��� 1

1.2 � EasyPhp��� 2

1.2.1 � Installing EasyPhp��� 3

1.2.2 � Resolving Problems��� 3

1.2.3 � Missing C# Library��� 3

1.2.4 � Port Conflicts��� 3

1.2.5 � Missing Files��� 4

1.2.6 � Can’t Install Files in Program Files Directory�� 4

1.2.7 � Apache Delays and Hang-ups�� 4

1.3 � Testing Your Environment��� 5

1.3.1 � Resolving Problems��� 5

1.4 � Alias Directories��� 6

1.5 � How It All Works��� 6

1.6 � Editors�� 7

1.7 � The Basic Syntax ��� 8

1.8 � Conditional Statements�� 12

1.9 � Switch Statement��� 17

1.10 � Functions��� 17

1.11 � Try/Catch Blocks�� 20

■ Contents

viii

1.12 � Arrays��� 21

1.13 � For, While, Foreach Loops��� 22

1.14 � Classes, Properties, Objects��� 22

■■Chapter 2: Simple Arrays��� 27

2.1 � What Are Arrays? Why Do We Need to Use Them?��� 27

2.1.1 � Why Do We Have a Choice?��� 30

2.2 � Other Ways to Define Arrays��� 34

2.3 � Html Arrays�� 36

2.3.1 � Deleting��� 37

2.4 � Updating & Inserting�� 38

■■Chapter 3: Multidimensional Arrays��� 41

3.1 � Html Arrays�� 45

3.2 � Deleting�� 53

3.2.1 � Updating & Inserting�� 54

■■Chapter 4: Associative and Object Arrays�� 57

4.1 � Deleting�� 64

4.1.1 � Updating & Inserting�� 64

4.2 � Object Arrays�� 68

■■Chapter 5: PHP Functions—Changing, Splitting, Slicing, and Sorting Arrays������ 75

5.1 � Changing Array Contents�� 75

5.2 � Splitting and Slicing Arrays�� 85

5.3 � Sorting Arrays�� 88

■■Chapter 6: PHP Functions—Comparing and Merging Arrays����������������������������� 101

6.1 � Comparing Arrays��� 101

6.2 � Merging Arrays��� 112

■ Contents

ix

■■Chapter 7: PHP Functions—Searching, Traversing, and Displaying Arrays������� 123

7.1 � Searching Arrays�� 123

7.2 � Traversing Arrays�� 128

7.3 � Displaying Array Contents�� 133

■■Appendix A: Case Study—Playing Checkers�� 143

Index�� 159

xi

About the Author

Steve Prettyman earned his bachelor of arts degree in education from Oglethorpe University in 1979. He
quickly began his teaching career as a high school mathematics instructor while continuing his education
by earning a master’s degree in business information systems from Georgia State University (1985). Since
then, Steve has spent over 30 years in the IT industry. The last, almost 20 years, he has been an instructor
and professor at Chattahoochee Technical College, Kennesaw State University, and Southern Polytechnic
State University. He is currently the Computer Science Department Chair for Florida Keys Community
College, Key West, Florida. His primary teaching responsibilities include programming, web design, and web
application development.

xiii

About the Technical Reviewer

Tri Phan is the founder of the Programming Learning Channel on
YouTube. He has over seven years of experience in the software industry.
Specifically, he has worked in many outsourcing companies and has
written many applications of many fields in different programming
languages such as PHP, Java, and C#. In addition, he has over six years of
experience in teaching at international and technological centers such as
Aptech, NIIT, and Kent College.

xv

Introduction

PHP Arrays: Single, Multidimensional, Associative, and Object Arrays in PHP 7 is intended for use as
a supplemental beginning-level programming book. It is not the goal of this book to cover advanced
techniques in the current versions of the PHP programming language. Some beginning knowledge of
general PHP programming concepts is expected but no actual programming experience or education is
assumed.

All code examples in this book are compatible with PHP 7. The newest methods (functions) available
in PHP have been used to provide the reader with the most current coding techniques. The examples use
core methods provided in the PHP language. PHP includes many additional methods to accomplish similar
tasks as shown within. The reader may, and should, research additional advanced array techniques after
understanding the material presented in this book.

Special Note—Teachers
This book is provided as a supplementary guide to introductory textbooks on PHP 7. The intent of this book
is to provide additional examples and explanation of the power and use of arrays in the PHP language. PHP
arrays provide many capabilities that arrays in other languages do not provide.

Teaching tools, including test banks, course outline, and PowerPoint slides are available as part of the
source code download available at the Apress website.

Code Examples, Images, and Links
Every effort has been made to catch any errors in code (and grammar). Please let us know if/when you discover
problems in this book. Please send all corrections to Steve Prettyman (steve_prettyman@hotmail.com).

All code examples, images, and links are available for download from the following location. Please
download code examples from the website. Copying code from the book may cause errors due to format
requirements for publishing.

www.apress.com/9781484225554

http://mailto:steve_prettyman@hotmail.com/
http://www.apress.com/9781484225554

1© Steve Prettyman 2017
S. Prettyman, PHP Arrays, DOI 10.1007/978-1-4842-2556-1_1

CHAPTER 1

PHP 7 Basics

After completing this chapter, the student will be able to…

Create a simple error-free PHP program

Understand the use and value of conditional statements

Understand the use and value of for, while, and foreach loops

Understand the use and value of functions

Understand the use and value of arrays

Understand the basic structure of an object-oriented PHP program

1.1 � Installation
The PHP environment can be installed on almost any operating system. This allows the developer the ability
to easily create a development and testing environment. Complete testing can and should be completed
before the code is installed in a live environment. The developer should determine the major PHP version
used in the live environment and replicate this same version in the test environment.

PHP 7 includes many new tools and has removed some tools from previous versions. Therefore,
it is imperative that both the live environment and the testing environment be the same. The testing
environment can also be used to test minor release changes on existing code before the live environment is
upgraded to the new release.

Although PHP can be installed by itself, novice and less experienced programmers should use one
of the many installation tools available to install PHP with Apache Server, MySQL, PhpAdmin, and other
related applications. These packages greatly simplify the process and are free and open source. Installing
PHP separately requires a more in-depth knowledge of what versions of tools are compatible and changes
required to the configuration files to link these tools together.

Apache, which is open source and free, is the most common server to use with PHP. However, PHP can
be used with other servers, including Microsoft’s Web Server. It is beyond the scope of this book to look at
other servers. However, you can find installation information on the Internet.

Electronic supplementary material  The online version of this chapter (doi:10.1007/978-1-4842-2556-1_1)
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-2556-1_1

Chapter 1 ■ PHP 7 Basics

2

MySQL, which is also open source and free, is the most common database used with PHP. PHP has the
ability to use other databases, including Oracle and SQL Server among others. In many cases, the coding
used to manipulate MySQL databases is very similar to the code used to manipulate other databases. php.
net includes some basic information on drivers and coding for non-MySQL databases. You can also find
additional information on the database’s websites. PhpAdmin is a free tool to easily create and update
MySQL database information. As stated before, most packages include a version of this software.

LAMP (Linux, Apache, MySQL, PHP), MAMP (Mac, Apache, MySQL, PHP), and WAMP (Windows,
Apache, MySQL, PHP) package versions are readily available on the web. There are many organizations that
currently create similar packages. We will briefly look at one of them. However, you will find that they all
work in a similar way.

1.2 � EasyPhp

The EasyPhp Development Server (available at easyphp.net) is a WAMP package which includes many
additional tools, including the following:

Python

Ruby

Perl

Nginx

You can install this package on any storage device, including a usb key, memory stick, external hard
drive, or your internal hard drive. This package provides easy configurations, along with direct access to
your applications and files. In addition to configuration files, error logs, access logs, and application logs
are provided. Additional features can be added to the base installation. Some of these are provided on the
EasyPhp website.

Figure 1-1.  EasyPhp

Chapter 1 ■ PHP 7 Basics

3

1.2.1 � Installing EasyPhp
The first time you attempt to install the development sever, you should accept the default settings provided
by the developers. If you run into problems during installation, review the “Resolving Problems” section of
this chapter.

■■ Warning P ay attention to what buttons you are clicking when downloading the software. You might install
much more than just EasyPhp.

1.2.2 � Resolving Problems
The following are some of the most common installation problems and resolutions to these problems. If
you encounter a problem not shown, or the resolution shown does not work in your environment, copy and
paste any error code you receive in a search engine (such as Google) to determine how others have solved
the problem.

1.2.3 � Missing C# Library
PHP 7 and earlier versions of PHP require the Microsoft Visual Studio C# library. If you have Windows 8/10,
this library is probably already installed. Also, if you have a recent version of Microsoft Visual Studio, it is also
probably already installed. If you receive an error indicating that C# is missing or the wrong version, paste
the message into a search engine on the Internet. Search for a response from Microsoft for directions to fix
the error. The response should include a link to download the missing files and installation instructions.

1.2.4 � Port Conflicts
If you already have a service using port 80, the default port for HTML traffic between your PC and the outside
world, you will receive an error message from Apache when it attempts to run. You can fix this problem in
multiple ways.

A. If you don’t mind shutting down other services using the port while you are developing, you can
follow the next directions. Once you are done using Apache and PHP, you can turn the services back on or
just reboot your PC and the services will turn back on.

	 1.	 Go to the Microsoft Windows 7/8/10 Task Manager (press Ctrl+Alt+Delete at the
same time).

	 2.	 Select the Services tab.

	 3.	 Look for any of the following services in Windows 7/8/10. If you find one
running, right-click it and turn it off. Then try restarting Apache again. If that
does not work, turn that one back on and try another one. (The names may be
slightly different depending on the version of Windows.)

SQL Server Reporter, Web Deployment Agent, BranchCache, Sync Share Service, WAS (IIS
Administrator), and W3SVC

B. If you need your other services running or you do not have the administrative privileges to turn off
services on port 80, you can change the default listening port location for Apache.

Chapter 1 ■ PHP 7 Basics

4

Go to your system tray (bottom-right corner of your screen). Find the EasyPHP icon by scrolling over
the icons. A description of each should appear. If you don’t see the icon, click the up arrow in the system tray
to see more icons. Right-click the EasyPHP icon. Select Configuration and then select Apache. This will open
the Apache configuration file (httpd.conf) into Notepad (or your default text editor). First save a copy of this
file somewhere in case you make an error. This will allow you to recover from any major mistakes that occur.

Search for “Listen 127.0.0.1:80” within the file. Change the occurrence of 80 to 8080 or to 81; on that line
only. This will allow the Apache server to listen to one of the ports that are not commonly used. Resave the
file (make sure you are resaving the original file to the original location).

■■ Note  Make sure when you’re using Notepad or any other text editor that you use Save As, and then select
All Files for the file type. Also make sure to include the .conf file extension. If you do not change the file type to
all files, your file will be saved as httpd.conf.txt. If that happens, the server will not see the file. You can easily fix
the problem by reopening the file and saving it in the proper method.

You can then restart Apache by going back to your system tray to find the EasyPHP icon. Double-click
the icon; a message box will appear that will give you the status Apache and MySQL. You will probably see
red for the Apache status. Click the Apache button. Within a few moments, it should turn green. This will
indicate that the server is now running. Do the same for MySQL.

1.2.5 � Missing Files
If you receive an error message related to this, somehow your files have become corrupted before
installation. Return to the EasyPHP web site and download the files again. Also, if you somehow mess up the
Apache configuration file, go back and reinstall the product again.

1.2.6 � Can’t Install Files in Program Files Directory
This indicates that you or something else has a high security restriction on that directory. Rerun the
installation and change the location of your installation to another directory. Just remember when we
reference the program files directory later in this book that you should instead look at the directory in which
your files were installed.

1.2.7 � Apache Delays and Hang-ups
In Windows 8/10 you may experience problems with Apache working slowly or hanging up. To correct this
problem go to your system tray (bottom-right corner of your screen). Find the EasyPHP icon by scrolling
over the icons. A description of each should appear. If you don’t see the icon, click the up arrow in the
system tray to see more icons. Right-click the EasyPHP icon. Select Configuration and then select Apache.

This will open the Apache configuration file (httpd.conf) into Notepad (or your default text editor). First
save a copy of this file somewhere in case you make an error. This will allow you to recover from any major
mistakes that occur.

Then add the following two lines to the bottom of the file.

AcceptFilter http none

AcceptFilter https none

Resave the file (make sure you are resaving the original file to the original location).

Chapter 1 ■ PHP 7 Basics

5

1.3 � Testing Your Environment
Before spending a lot of time coding, you need to ensure that your environment has been set up properly.
The following suggestions will provide some clues to indicate if the environment is working.

	 1.	 Testing Your Administration Environment

First we need to test the server and see if our administration pages will display.
Open your favorite browser and enter the following: http://127.0.0.1/home/

If the environment is working, you will see an administrative page for Apache
Server. Otherwise, check to see if the server is actually running in your
computer’s services tab.

	 2.	 Testing the Development Environment

Open a text editor (such as Notepad, Notepad++, or Textedit) and enter the
following code:

<?php
 print "Hello World";
?>

Using the Save As selection on the File menu, change the File Type to All Files or to php. Enter the file
name test.php and save it to the following location.

C:\Program Files (x86)\EasyPHP-DevServer-16.1VC11\data\localweb\projects

Of course, you should change the version name (or program file name) to the correct version (location)
that you are using on your machine.

If you saved your files correctly, you can attempt to run your program by entering the following in
your browser.

http://127.0.0.1/projects/test.php

1.3.1 � Resolving Problems
If “Hello World” does not display in your browser when you run the test program, review the following error
resolutions. If you do not see your error, or the suggested resolution does not work, copy and paste your
error message into a browser and try some of the suggestions from other users on the web.

Nothing is displayed, error 404:

	 1.	 Make sure you typed the address exactly as shown.

	 2.	 Your server might be hung up. Stop and restart it.

	 3.	 Make sure you placed your file in the correct location.

	 4.	 Make sure you saved your file as a .php file and not as .txt. Try Save As again and
renaming the file (make sure file type is either All Files or php).

	 5.	 Check for typos in your actual program code. Did you remember the semicolon (;)?

Fix any and resave. You might need to stop and start the server if it does not see
the changes for some reason. You can go look at the PHP log files to see any
errors that might exist in your code.

http://127.0.0.1/home/
http://127.0.0.1/projects/test.php

Chapter 1 ■ PHP 7 Basics

6

	 6.	 Go to the Apache log files to look for errors. If you cannot correct them, copy
the errors and paste them in a search engine to see what others have found as
solutions.

The actual program code is displayed not the results of executing the code:

	 1.	 Make sure you saved your file as a .php file and not as .txt. Try Save As again and
renaming the file (make sure file type is either All Files or php).

	 2.	 Your Apache server or PHP might not be started or is hung. Stop and start
Apache again.

	 3.	 Did you forget or have a typo in the <?php or ?> lines?

	 4.	 Go to the Apache log files to find the errors. If you cannot correct them, copy
the errors and paste them in a search engine to see what others have found as
solutions.

1.4 � Alias Directories
Apache allows you to create additional directories to host your PHP programs. Alias directories must include
an alias name (such as php1) and the actual physical location of the file(s) (such as c://myfiles/php). The
alias name is used by the server to determine the actual location of the file.

www.nothingmuch.com/php1/test.php

The user entering this address might assume that the test.php program exists in a folder with a name of
php1. However, this might not be the case. If php1 is actually an alias directory the browser will redirect to
a different location (such as c://myfiles). This feature allows some sense of security because the user does
not know which files are kept where. It also allows flexibility as files could be moved (from c://myfiles) to
another location (such as c://oldfiles) without the user knowing. The person moving the files can update the
alias information in the server to a new location, and keep the same alias name (such as php1).

1.5 � How It All Works
When a url is entered into a browser, the request is sent to a web server (Apache). If the file contains only
html, JavaScript, and/or css, then the file requested is sent directly to the requesting browser. The requesting
browser will then interpret the html, css, and JavaScript code. The results of the interpretation are then
displayed in the browser.

If the file contains additional code, such as PHP, the server (Apache) will determine how to handle the
additional code. PHP programs run within the Apache server (not the browser). The Apache server uses
the file ending (.php) to determine if there is PHP code within a file. It will use the opening (<?php) and
closing (?>) tags that surround PHP code to determine what needs to be sent to the PHP environment to
be interpreted and executed. The PHP environment will return the results of the execution of the program,
such as “Hello World” in the test example, back to the Apache server. The server will then return any output
(along with any html, css, and/or JavaScript code) back to the browser.

http://www.nothingmuch.com/php1/test.php

Chapter 1 ■ PHP 7 Basics

7

PHP code can be mixed with html, css, and JavaScript.

<html>
<head><title>Hello World</title></head>
<body>
<?php
 print "Hello World";
?>
</body>
</html>

The test PHP program shown previously could include html code as shown in the preceding. The output
seen by the user would not change. However, the preceding html would exist within the browser window.

<html>
<head><title>Hello World</title></head>
<body>
 Hello World
</body>
</html>

If you view the source code resulting from the execution of the last example (right-click, view source),
you will see the html code that did not exist within the test program (as shown in the preceding).

In this example, the html code will be interpreted by the browser. The PHP code will be sent to
the Apache server to be processed. The Apache server will send the code to the PHP environment for
processing. The PHP environment will interpret the code and send the results back to the Apache server. The
results of the interpretation of the code will be returned to the browser.

PHP programs can also output html code when executed.

<html>
<head><title>Hello World</title></head>
<body>
<?php
 print "<h1>Hello World</h1>";
?>
</body>
</html>

In this example, everything within the quotes in the PHP statement will be sent back to the Apache
Server (along with the html code shown). This would include the h1 statements shown. All the code
returned to the Apache sever would then be sent back to the browser. The browser would then interpret all
code returned (which includes all the html statements, the h1 tags, and the “Hello World” string). The
browser will display “Hello World” as a header on the web page.

1.6 � Editors
PHP programs do not require any special IDEs or editors to create code. Since PHP code is not compiled, the
server will interpret the code when it is executed. This allows the developer the ability to use any text editor
(such as Notepad or Notepad++). The developer must ensure that all file endings containing PHP code
include .php. By default, Notepad and other text editors use .txt as a file ending. By using “save as” in the file

Chapter 1 ■ PHP 7 Basics

8

menu of the editor, the developer can adjust the file ending to “.php.” As mentioned earlier, if the code is not
interpreted by the server, check the file ending. Many times the txt file endings are hidden. Thus, if you are
not careful, a file ending like “.php.txt” could be created. In many cases, code contained in this file would not
execute. This could easily be fixed by going back into the editor and resaving the file in the proper format.

There are many free editors available that can be used to write PHP code. One of the most popular is
Notepad++ (notpad-plus-plus.org). You can find additional free editors at download.com.

1.7 � The Basic Syntax
Now let’s do a quick review of some of the basic components of the PHP language. If you find difficulty
with any of the following topics, you may want to review many of the free videos and tutorials on the Web,
including thenewboston.com and w3cschools.com.

<?php
 // code goes here
?>

As stated earlier, all PHP code must be placed between the <?php and ?> tags. Comments can be
created using // (as shown in the preceding).

<?php
 print "Hello World";
?>

All executable code must include a semicolon at the end of the statement. Any strings (such as Hello
World in the preceding) must be included in either double “” or single ‘’ marks. Some PHP functions require
the use of one or the other. All PHP functions begin with a lowercase letter (as in print). Most functions
usually accept parameters that are passed into the function. In this example, the string “Hello World” is
passed into the print function.

<?php
 myFunction("Hello World");
?>

Most functions require () around the attributes that are passed into the function.

<?php
 $result = addIt(12, 13);
 print $result;
?>

Variables store information in memory. In PHP you do not need to declare a data type when using
a variable. You actually don’t even need to declare a variable separately before using it. In the preceding
example, a variable ($result) will hold whatever is returned by a function called addIt. This function accepts
two parameters (12, 13), which we assume will add the numbers together and return the result. The print
statement will then display whatever is contained in the variable.

Chapter 1 ■ PHP 7 Basics

9

When declaring variables or functions, the developer can use many styles. The most common is camel
case. In camel case the first word is lowercase and the remaining words have a capitalized first letter, such as
addIt. However, other styles are acceptable, such as:

$first_number
$second_Number
$_value

Variables must always include the $ as the first character, and alphabetic characters. They can also
include the underscore (_). No other special symbols are allowed. No spaces are allowed.

1: $myValue = "Help";
2: $myValue = 123;
3: $myValue = 123 + 456;
4: $myValue = "Help" . " me!";
5: $myValue = "Help " . 123;

The data type is determined the first time a variable is used.

	 1.	 The data type is string (characters).

	 2.	 The data type would change to integer (whole numbers).

	 3.	 123 and 456 are added together and the result is placed into the variable (which
now holds an integer).

	 4.	 This statement uses the string concatenation character (.) to merge the two
strings together to form “Help me!” which is then placed in the variable
(which—you guessed it—now contains a string).

	 5.	 This statement merges a string and integer. PHP will convert the integer to a
string “123” to allow it to be concatenated with the other string to produce “Help
123,” which will be placed into the variable.

Chapter 1 ■ PHP 7 Basics

10

Arithmetic operations work in a similar way to mathematics. The exception is that the calculation is
done on the right side of the expression (right side of the = sign) and the result is placed into the variable (or
other object) on the left side of the expression ($num). PHP includes many functions to produce results seen
on a calculator (for more information visit php.net). PHP also allows you to use parentheses () to change
the order in which values are calculated. Otherwise the language follows the normal mathematical order of
operations.

Variables can be incremented/decremented before they are used (++$num, --$num), or after they are
used ($num++, $num--).

	 1.	 The assignment operator (=) will take the value from the right side of the
expression (1) and place it into the variable ($my_num) on the left side of the
expression. If the variable does not exist, it will be created in memory. The data
type (in this case integer) will be determined when the value is placed in the
variable.

	 2.	 This statement adds the value on the right side of the expression (1) to the
contents (value) that exists in the variable ($my_num) on the left side of the
expression. If the variable has not existed before, zero will be added to the value
on the right side and the result is placed into the variable ($my_num). If a string
exists in the variable, an attempt will be made to convert it to a number.

	 3.	 This statement is similar to #2, except the value on the right side is subtracted
from the value contained in the variable. If the variable did not previously exist,
the value on the right side (1) is subtracted from 0. In this example, 1 will be
subtracted from the value in $my_num and the result will be placed back into
$my_num. If a string exists in the variable, an attempt will be made to convert it
to a number.

	 4.	 This statement is similar to #3, except the value is multiplied instead of added. If
the variable did not previously exist, the value on the right side (1) is multiplied
by 0. If a string exists in the variable, an attempt will be made to convert it to a
number.

Chapter 1 ■ PHP 7 Basics

11

	 5.	 This statement is similar to #4, except the value from the right side is divided into
the value contained in the variable. Only the integer result (whole number) is
placed into the variable. If a string exists in the variable, an attempt will be made
to convert it to a number.

	 6.	 This statement is similar to #5, except the remainder of the division is placed into
the variable. If a string exists in the variable, an attempt will be made to convert it
to a number.

	 7.	 The period (.) is the string concatenation symbol. In this example “Hi” is added
to whatever string exists within the variable ($my_value). If the variable has not
existed previously, then the variable is assumed to hold an empty string. If a
numeric value is contained in the variable, an attempt will be made to convert it
to a string. Then the string given (“Hi”) will be concatenated to it.

Comparing two values to determine if they are equal requires two (==) or three (===) equal signs. One
(=) equal sign is used as an “assignment operator” as shown in the last table.

Chapter 1 ■ PHP 7 Basics

12

1.8 � Conditional Statements
Conditional statements determine if a comparison is “true” or “false.” If the statement is true, then the code
right after the if statement is executed. If the statement is false, the code after the else statement (if there is
one) is executed.

Examples using conditional statements with comparison operators:

	 1.	  

<?php
 $a = 25; $b = 36;

 if($a == $b) {
 print "$b equals $a";
 }
 else {
 print "$b and $a are not equal";
}
?>

25 and 36 are not equal

PHP will interpret $b and $a within the string and output the contents of each as
shown in the preceding.

	 2.	  

<?php
 $a = "a"; $b = "b";
 if($a === $b) {
 print "$b equals $a";
 }
 else {
 print "$b and $a are not equal";
 }
?>

A and a are not equal

Using three equal signs (===) also compares case. In this example the comparison is
false due to the case. If you remove one of the equal signs, the result would be true.

	 3.	  

<?php
 $a = 25; $b = 36;
 if($a != $b) {
 print "$b and $a are not equal";
 else {
 print "$b and $a are not equal";
 }
?>

Chapter 1 ■ PHP 7 Basics

13

25 and 36 are not equal

The not operator works in reverse of the equals operator (see #1).

	 4.	  

<?php
 $a = "A"; $b = "a";
 if($a !== $b) {
 print "$b and $a are not equal";
 }
 else {
 print "$b and $a are equal";
 }
?>

a and A are not equal.

The not case operator works in reverse of the case operator (see #2).

	 5.	  

<?php
 $a = 25; $b = 36;
 if($a < $b) {
 print "$a is less than $b";
 }
 else {
 print "$b is greater than $a";
 }
?>

25 is less than 36

Less than returns true if the value on the left is less than the value on the right.

	 6.	  

<?php
 $a = 36; $b = 36;
 if($a <= $b) {
 print "$a is less than or equal to $b";
 }
 else {
 print "$b is greater than $a";
 }
?>

36 is less than or equal to 36

The less than or equal to comparison works similar to #5. However, if the values
are equal then it returns true.

Chapter 1 ■ PHP 7 Basics

14

	 7.	  

<?php
 $a = 25; $b = 36;
 if($a > $b) {
 print "$a is greater than $b";
 }
 else {
 print "$b is greater than $a";
 }
?>

36 is greater than 25

The greater than comparison returns true if the left value is greater than the right
value.

	 8.	  

<?php
 $a = 36; $b = 36;
 if($a >= $b) {
 print "$a is greater than or equal to $b";
 }
 else {
 print "$b is greater than $a";
 }
?>

36 is greater than or equal to 36

The greater than or equal to comparison works similar to #7. However, if the two
values are equal it returns true.

	 9.	  

<?php
 $a = 36; $b = 36;
 $result = $a <=> $b;
 if($result === 0) {
 print "Both are equal";
 } else if($result === 1) {
 print "$a is greater than $b";
 } else {
 print "$b is greater than $a";
 }
?>

Both are equal

The rocket ship operator (available in PHP7+) returns –1 if $a < b, returns 0 if $a
equals $b, or returns 1 if $a > $b.

Chapter 1 ■ PHP 7 Basics

15

Logical operators allow you to ask more than one question in a conditional statement.
Examples:

	 1.	  

<?php
 $a = 25; $b = 25; $c = 25; $d = 35;
 If ($a == $b AND $c == $d) {
 print "Everyone is equal!";
 } else {
 print "Someone is not equal";
 }
?>

Everyone is equal.

	 2.	  

<?php
 $a = 25; $b = 25; $c = 35; $d = 35;
 If ($a == $b OR $c == $d) {
 print "Some or all of us are equal!";
 } else {
 print "No one is equal";
 }
?>

Some or all of us are equal.

Only one side of the comparison has to be true for the complete expression to be true.

	 3.	  

<?php
 $a = 25; $b = 25; $c = 25; $d = 25;
 If ($a == $b XOR $c == $d) {
 print "Everyone is equal!";
 } else {
 print "Someone is not equal";
 }
?>

Chapter 1 ■ PHP 7 Basics

16

Someone is not equal

With excusive or (XOR) only one side of the expression can be true. In this
example, both sides were true so it evaluates to false.

	 4.	  

<?php
 $a = 25; $b = 25; $c = 25; $d = 25;
 If (NOT ($a == $b XOR $c == $d)) {
 print "Everyone is equal!";
 } else {
 print "Someone is not equal";
 }
 ?>

Everyone is equal

The not expression reverses the result. This excusive or (XOR) returned false.
However, the NOT reversed the result to true.

? Operator

The ? operator is a short coding version of a conditional if-then-else statement.

<?php
 $a = 36; $b = 36;
 print $a = $b ? "They are equal" : "They are not equal";
?>

They are equal

The statement placed between the ? and : is executed if the comparison is true.
The statement between the : and ; is executed if the statement is false. Since a
print command is to the left of the comparison, the result of the comparison will
be printed.

<?php
 $a = 36; $b = 24;
 print $a <=> $b ? "They are equal" :
 "$a is greater than $b" :
 "$b is greater than $a";
?>

36 is greater than 24

In PHP 7+ you can also evaluate for 0, –1, and 1. This comparison becomes a very
short and efficient determination of whether the values are equal, or which is
greater.

Chapter 1 ■ PHP 7 Basics

17

1.9 � Switch Statement
The switch statement can be used to eliminate embedded if-then-else statements which are determining a
value within a variable.

<?php
 $a = 36;
 switch ($a) {
 case 10:
 print "10";
 break;
 case 20:
 print "20";
 break;
 case 30:
 print "30";
 break;
 default:
 print "Number was not found";
 break;
 }

?>

Number was not found
The break statement is required for each collection of expressions. In this example, the values in $a

are compared to 10, 20, and 30. Since none of these comparisons is ‘true’ the code will execute the default
section, which is similar to an else.

1.10 � Functions
In addition to the thousands of built-in or easily importable PHP functions available for your use, you can
also create your own functions.

function function_name(atribute1, atribute2, ...) {

// code goes here

}

The general format of a function is shown in the preceding. The function keyword is lowercase. The
name you provide for the function uses almost the same format at variables, except you do not include the $.
Variables can be passed into the function in the parentheses. All code goes between the brackets {}.

function display_hello() {
 print "Hello";
}

Chapter 1 ■ PHP 7 Basics

18

To call a function you use the function name and pass any required variables. In the preceding example
no required variables are needed.

<?php
 function display_hello() {
 print "Hello";
 }
 display_hello();
 }
?>

This code would display “Hello.” The function can also be placed at the bottom of the code. However, be
consistent. Place your functions either at the top or at the bottom of the code.

<?php
 function display_hello($value) {
 print $value;
 }
 display_hello("Hello");
 }
?>

This example accomplishes the same task. However, it allows some flexibility by letting the user pass
the value to be displayed. Notice that the string was passed within the parentheses when the function was
called. The string will drop into the variable $value (it determines where values go by the position they are
passed). The print statement in the function then uses the variable $value to display the information. This
function would actually display almost anything passed, even though it is called display_hello.

<?php
 function display_names($first_name, $last_name = "none") {
 print "Your first name is $first_name";
 if ($last_name != "none") {
 print "Your last name is $last_name";
 }
 }
 display_names("James");
 display_names("Jackie", "Jones");
?>

This display_names function accepts two values ($first_name, $last_name). However, it also provides
a default value for the second parameter. In the first call to the function, “James” will pass into $first_name.
Since there is not a second parameter passed, $last_name will contain “none.” “James” will be displayed.
The if statement will determine that a second value has not been passed and will not attempt to display
$last_name. In the second call, both values are passed. “Jackie” will be passed into $first_name. “Jones” will
be passed into $last_name. The function will display “Jackie Jones.”

<?php
 function addtwo($first_value, $second_value) {
 $result = $first_value +$second_value;

Chapter 1 ■ PHP 7 Basics

19

 return $result;
 }
 print addtwo(12, 14);
?>

In the addtwo example, two numerical values are passed into the function. The call to the function
causes 12 to be passed into $first_value and 14 to be placed into $second_value. The two numbers are added
together and the result is place into $result. A return statement returns the value back to the program that
called it (instead of displaying it). This allows the calling code the flexibility to determine what to do with the
returned value. In this example, the function was called within a print execution. This will cause the value
returned by the addtwo function (26) to be displayed.

<?php
 declare(strict_types=1);
 function addtwo(integer $first_value,integer $second_value) : integer {
 $result = $first_value +$second_value;
 return $result;
 }
 print addtwo(12, 14);
?>

In PHP 7+ we can add Scalar type hints to restrict the type of information passed into and out of a
function. In the preceding example, the parameters pass in are restricted to integers only as indicated by the
integer keyword before the variable names. The return value is also restricted to integer, as indicated by the
: integer as part of the function header. strict_type must be set to 1 for enforcement. If it is set to zero (the
default) the data types shown will be ignored. Currently integer, string, bool, and float are the only valid data
types.

include, include_once, require, require_once

As you develop functions you will discover that some could be used in multiple applications. These
functions can reside in a separate file and be imported into an application.

<?php
 declare(strict_types=1);
 function addtwo(integer $first_value, integer $second_value) : integer {
 $result = $first_value + $second_value;
 return $result;
 }
?>

Functions that reside within their own files must still include the opening and closing php tags as
shown in the preceding.

<?php
 include "addtwo.php";
 print addtwo(12, 14);
?>

Chapter 1 ■ PHP 7 Basics

20

This program will import the addtwo.php file (which contains the addtwo function). Once it is
imported, it can call the function as shown.

The include keyword will search for the file and attempt to include it in the program. If the file does not
exist, the program will continue. The include_once keyword is similar to the include. However, it makes an
additional check to discover if the file has already been imported. If it has, it ignores the request (does not
produce an error). include would produce errors if the file has already been imported because there would
now be multiple functions with the same name.

The require keyword is similar to the include keyword. However, if the file does not exist, an error will be
produced. The require_once keyword is similar to the require keyword with the additional check to not load
the file if it has already been loaded.

1.11 � Try/Catch Blocks
The examples shown do not attempt to handle any errors. There are multiple possible problems with these
examples, if the user does not enter what it expected. We can adjust the calling program to handle possible
problems.

<?php
 try {
 include "addtwo.php";
 print dividetwo(12, 14);
 }
 catch(zeroException $e) {
 print "Don't try to divide by zero!";
 }
 catch(Exception $e) {
 print $e->getMessage();
 }
 catch(Error $e) {
 print $e->getMessage();
 }
?>

In this example, both the include statement and the print statement are placed in a try block. The
program will execute statements in a try block until it runs into a problem. When a problem occurs it will
look for a catch block to handle the problem. Since the include statement depends on a file existing external
to the program, it is important that the program be able to handle the possibility that the file might not exist.
This example also places the dividetwo function within the try block. If this dividetwo function attempts to
divide by zero, PHP will raise an exception.

Starting with PHP 7+ all Exceptions and Errors can be handled within the program. In this example, the
code specially captures the zeroException exception which would be raised by PHP if an attempt was made
to divide by zero. If that occurs, the message shown in the block would be displayed and the program would
shut down properly (not error).

In addition, two additional catch blocks are shown. The second catch captures all other Exceptions
caused by the program. The third catch block captures all Errors, including syntax errors. If the execution
of the code jumps the flow into one of these blocks, the standard error message would be displayed and the
program would be shut down without crashing. It is important to ensure that live programs do not crash. It
is better to capture any problems and then display a message to the user requesting that they try using the
system again later.

Chapter 1 ■ PHP 7 Basics

21

1.12 � Arrays
Arrays hold multiple related information in memory. For example, an array might contain class information
such as class number, class name, description, room, instructor, and size (number of students).

$class_array[0] = "CS122";
// class number
$class_array[1] ="Programming Concepts 1";
// class name
$class_array[2] ="Basic concepts of the PHP language.";
// description
$class_array[3] = "B123"; // room
$class_array[4] = "Dr. Abraham Excell";
// instructor
$class_array[5] = 50;
// number of students

This array has been created dynamically (on the fly). We can also create the array using a more
common format.

$class_array = array ('CS122',
 'Programming Concepts 1',
 'Basic concepts of the PHP language.',
 'B123', 'Dr. Abraham Excell', 50);

This format will also create the array, using fewer lines of code. The array itself actually behaves in exactly
the same way as the previous array. Both of these arrays require us to remember what content is placed in
which position. We can use Associate Arrays to name our positions (subscripts) instead of using numbers.

$class_array["class number"] = "CS122";
$class_array["class name"] ="Programming Concepts 1";
$class_array["description"] ="Basic concepts of the PHP language.";
$class_array["room"] = "B123";
$class_array["instructor"] ="Dr. Abraham Excell";
$class_array["number of students"] = 50;

This provides an easier-to-understand relationship between the values and the array. We can also
create the same relationship with the other format shown to create an array.

$class_array = array (
 array ('CS122', 'Programming Concepts 1',
 'Basic concepts of the PHP language.',
 'B123', 'Dr. Abraham Excell', 50),
 array ('CS123', 'Programming Concepts 2',
 'Advanced concepts of the PHP language.',
 'B124', 'Dr. Abraham Excell', 50)
);

Chapter 1 ■ PHP 7 Basics

22

Arrays can also be multidimensional. The preceding array contains two rows representing two different
classes. We will look at arrays in more detail in the coming chapters.

1.13 � For, While, Foreach Loops
Loops provide the ability to execute the same code multiple times.

$I = 1;
while ($I <= 10) {
 print "$I times";
 $I++;
}

This block of code would produce 1 times 2 times 3 times 4 times 5 times 6 times 7 times 8 times 9
times 10 times.

The for loop works well when you know exactly how many times you want to loop. In the example, $I is
set to 1. Then the loop iterates as long as $I is less than or equal to 10. Each time the loop reaches the top, the
value of I is increased by 1.

$I = 1;
while ($I <= 10) {
 print "$I times";
 I++;
}

The same task can be accomplished with a while loop. However, as you can see, it does take slightly
more code. You also have to remember to include the incrementing of the counting variable ($I++). If
that statement is forgotten, the loop would become infinite. With the for loop, you are easily reminded to
increment the variable in the top statement in the loop. While loops are good for conditions that might
change, such as looping until you reach the end of a file or end of an array.

foreach($class_array as $value)
{
 print $value;
}

foreach loops work well with arrays. The preceding example loops through the one-dimensional array
($class_array) shown previously and displays each value. $value represents the current value that the loop is
looking at in the array. foreach loops do not require the programmer to create code that checks for the end
of the array. This eliminates any possibility that an “Out of Bounds” error message could occur. Also, foreach
loops automatically skip over any positions in the array that have not yet be declared. This eliminates any
possible “Null value” messages being displayed when it loops through the array.

1.14 � Classes, Properties, Objects
PHP is an object-oriented language. Object-oriented languages can declare classes that contain properties
(variables) and methods (functions). One or more instances of a class (called an Object) can be declared and
used within the program.

The use of classes and objects mimic the real world. In the animal kingdom, all animals have some
similar characteristics, such as the eyes and eye color. These common characteristics (which we call

Chapter 1 ■ PHP 7 Basics

23

properties in PHP) can be saved in a class called animals. Also common behaviors, such as movement
(which would exist in methods) can be saved in the same animal class. Lions are (of course) a type of animal.
As such, they inherit all the characteristics of an animal (they inherit the animal class). However, lions,
themselves have similar characteristics and behaviors that define them as a lion. A lion class could inherit
the animal class and include those unique traits that make a lion a lion. African lions are different than Asian
lions. An African lion class (or Asian lion class) could, again, provide the differences. Finally, an actual lion
living in Africa is an object which physically exists, inheriting from the African lion class, which inherits from
the lion class, which inherits from the animal class.

Let’s look at a simple example, to get a general understanding. If you are interested in a more in-depth
understanding, there are many textbooks and free website tutorials/videos that can help enhance your
studies.

<?php
 class Lion {
 // code goes here
 }
?>

All properties (variables) and methods (functions) are contained within the brackets of the class as
shown in the preceding. Classes are said to be encapsulated as the class provides a capsule to hold and
protect everything within. We have already discovered that classes can use inheritance to pull in properties
and methods from another class. Object-oriented languages also provide polymorphism, which allows
methods and other objects to have the same name, but the ability to function differently. For example,
several versions of an addnumber method could have different signatures which allow a different amount of
numbers to be passed into the method to produce a sum of the values passed.

<?php
class Lion {
 private $color = "no color";
 private $weight = 0;
}
?>

Properties are declared within the class in almost the same way as the variables discussed earlier. The only
difference is that the properties have an access modifier of private, which limits the access to the property to the
class itself. PHP actually does not enforce this and does allow you to directly change the values in a property.
However, this weakens the power of classes to verify that data passed into the class is valid before it is saved.

Properties set to private must be indirectly accessed and modified by get and set methods. Get methods
return the value contained in a property to the program which made an instance (object) of the class itself.

<?php
 class Lion {
 private $color = "no color";
 private $weight = 0;
 function get_color() {
 return $this->color;
 }
 function get_weight() {
 return $this->weight;
 }
 }
?>

Chapter 1 ■ PHP 7 Basics

24

In this example, the get_color method returns the contents of the $color property. The get_weight
method returns the contents of the $weight property.

Set methods provide the user of the class (object) the ability to change the contents within the
properties.

<?php
 class Lion {
 private $color = "no color";
 private $weight = 0;
 function get_color() {
 return $this->color;
 }
 function get_weight() {
 return $this->weight;
 }
 function set_color($value) {
 $this->color = $value;
 }
 function set_weight($value) {
 if ($value > 0) {
 $this->weight = $value;
 }
 }

?>

Set methods can (and should) verify the data passed. In the preceding example, the weight is verified
to be more than zero before the new weight is saved. If the weight passed is not valid, the update is ignored.
The class could raise an exception for the calling program to handle when problems occur.

■■ Note  $this-> is a pointer which tells the system to use the private property created in the top of the
current object of the class.

<?php
 require_once("lion.php");
 $fred = new Lion;
 print $fred->get_weight(); // 0
 print $fred->get_color(); // no color
 $fred->set_color("Yellow");
 print $fred->get_color(); // Yellow
 $fred->set_weight(50);
 print $fred->get_weight(); // 50
?>

Classes are usually contained in separate files (with the class name and .php) to allow them to be used
in multiple programs. They can then be pulled into a calling program using one of the methods previously
discussed. An instance of the class (an object) must be given a name ($fred in the preceding). This name is
then used to point to the methods (or properties) to be used within the object. In the preceding example, the

Chapter 1 ■ PHP 7 Basics

25

get methods are used to display the initial values of the properties. The set methods change these values and
the get methods are called again to display the changes.

There is a lot more to learn about php syntax, along with class, properties, and methods. Hopefully, this
quick introduction has provided a general understanding which might inspire you to study the topic more in-
depth. Now that you have seen a quick review of the PHP language, let’s take a more in-depth look at arrays.

EXERCISES

(You can download all working examples from this chapter at www.littleoceanwaves.com/arrays/)

1.	� Create a PHP program that contains an array with your name, address, and phone
number. The program should display the contents of the array to the user.

2.	 When should conditional statements be used?

3.	 When is it a good idea to use a function?

4.	 Why is the foreach loop a good choice when working with arrays?

5.	 Using the php.net web site, explain the difference between the print and echo
statements.

http://www.littleoceanwaves.com/understandingarrays/

27© Steve Prettyman 2017
S. Prettyman, PHP Arrays, DOI 10.1007/978-1-4842-2556-1_2

CHAPTER 2

Simple Arrays

After completing this chapter, the student will be able to…

Define and describe the advantages in using arrays

Create an html form that validates information containing an html array

Create a simple PHP array

Save values into a simple PHP array

Display values in a simple array

Add values from an html form into a simple array

Validate values before placing them into an array

2.1 � What Are Arrays? Why Do We Need to Use Them?
Whenever a program uses information, that information must be stored in the memory of the computer.
Individual information can be stored by creating a property.

$propertyname = value;

Property names are declared using the $ and a descriptive name for the property. PHP property names
begin with a lowercase letter. If the programmer wants to use more than one word for the name, the camel
case format and/or separation of the words via a special character (usually the _) can be used.

$firstName = "";
$first_Name = "";
$first_name = "";

Property names should be meaningful to make your program more readable.

$a = "";
$last_name = "";

In this example, $a is not meaningful. We do not have any indication of what might be stored. However,
$last_name is meaningful; we understand that a person’s last name will be stored. PHP itself will not stop
you from declaring a property with a capital letter. However, that is usually reserved for class names and
constants.

Chapter 2 ■ Simple Arrays

28

Let’s take a quick look at a coding example that stores information using a property (or variable). Our
example program will request personal information (such as name, address, city, state, ZIP) from a user via a
web form (see Figure 2-1).

Figure 2-1.  example1.html

Example 2-1.  example1.html

<!DOCTYPE html>
<html lan='en'>
<head>
<title>Customer Information Form</title>
</head>
<body>
<form method='post' action='process_customer.php'>
<h2>Please enter information in all fields</h2>
First Name <input type='text' pattern='[a-zA-Z]*' title='15 or less alphabetic characters'
maxlength='15' name='first_name' id='first_name' />

Last Name <input type='text' pattern='[a-zA-Z]*' title='20 or less alphabetic characters'
maxlength='20' name='last_name' id='last_name' />

Address <input type='text' title='30 or less characters' maxlength='30' name='address'
id='address' />

City <input type='text' pattern='[a-zA-Z]*' title='20 or less characters' maxlength='20'
name='city' id='city' />

State <input type='text' pattern='[a-zA-Z]*' title='2 characters' maxlength='2'
name='state' id='state' />

Zip code <input type='number' min='11111' max='99999' title='5 numerical characters'
name='zip_code' id='zip_code' />

<input type='submit' value="Click to submit your information" />
</form>
</body>
</html>

Example 2-1 provides a pretty typical web form that requests information from the user. The html
shown also filters the information accepted by the user, using html 5, to ensure that information was
provided in the proper format.

Chapter 2 ■ Simple Arrays

29

■■ Note  If you don’t know html, you should review some of the free tutorials and videos provided on the web.
PHP is a web application language which commonly interfaces with html and JavaScript.

Once the user enters the information in the proper format and hits the submit button, the information
will be sent to a program on the web server for processing.

<form method='post' action='process_customer.php'>

In this example, the html form line indicates that the process_customer.php application will accept and
handle the information.

When the information is sent, it is actually sent as a series of properties and values (also called keys and
values). The property names are determined from the values shown in the name attributes of the html form
(such as first_name in the preceding example). The values assigned to the properties are retrieved from the
information entered by the user in the textboxes.

Example 2-2.  Properties and values sent to process_customer.php

first_name = "Fred"
last_name = "Smith"
address = "123 Main Street"
city = "Atlanta"
state = "GA"
zip_code = "30001"

The properties created by html are very similar to properties used in PHP. This allows them to be
easily processed within a PHP program. Both PHP and html create properties when they are first used. PHP
considers the data type of any information that is displayed or received from an html web site to be string.
Thus, as shown in Example 2-2, even though the html form requires the user to enter a number for the ZIP
code, the value is actually stored as a string (indicated by the quotes).

PHP dynamically determines a property’s data type when a value is stored into the property. This
can have advantages and disadvantages. One advantage is the ability for PHP to change the data type of
information stored in a property at any time.

$zip_code = "30001";
$zip_code = 30001;

The first statement in the preceding would place the string “30001” into the property $zip_code. If the
property did not exist before, it would also be created. The second statement would change the type of
information stored in $zip_code from a string to an integer.

Example 2-3.  process_customer.php

<?php
// accepts information from example1.html
// This is NOT a complete program.
//The validate methods shown need to be created to clean any input.
$first_name = validate_first_name($_POST['first_name']);

Chapter 2 ■ Simple Arrays

30

$last_name = validate_last_name($_POST['last_name']);
$address = validate_address($_POST['address']);
$city = validate_city($_POST['city']);
$state = validate_state($_POST['state']);
$zip_code = validate_zip_code($_POST['zip_code']);
print "Your name is $first_name $last_name.";
print "You live at $address, $city, $state, $zip_code";
?>

A PHP program can access information passed from an html form using the $_POST or $_GET methods.
The method used in the PHP program must match the type indicated in the html form attribute. Information
passed via post will not display in the URL address in the browser. Information passed via get will display on
the URL line.

2.1.1 � Why Do We Have a Choice?
Information passed via get does not use as much server memory because it is contained in the URL address.
Information passed via post resides in the memory of the server. Sites that have heavy traffic, such as search
engines, use get to be as memory efficient as possible. Although passing information via post ‘hides’ the
information from the URL line, it is not considered to be secure because it is not usually encrypted.

The $_POST and $_GET methods use the property name created by the html form (‘first_name’) to
retrieve the value passed (‘Fred’). The information can then be placed into a property ($first_name) that is
defined in the program itself. Remember, all the information gathered via the $_POST (or $_GET) method is
stored as the string data type (since the html form can only pass strings).

Since PHP dynamically creates a property the first time it is used, space is allocated in memory for the
property and its value by the operating system of the web server.

$first_name = validate_first_name($_POST['first_name']);

This line will pull the data from the first_name html textbox which resides in the form. It will validate
the data, and if the data is valid, it will create the property $first_name and place the information into the
property (in memory). The same process occurs for the other lines in the preceding example, except for the
print statement. The print statement will display each of the values currently in the properties.

■■ Note  It is very important to validate any information received from a client machine before placing it into
properties in a program. This example indicates that several validate methods (such as ‘validate_first_name’)
exist in the program to accomplish this task.

declare(strict_types=1);
function validate_first_name(string $value) : string
 {
 If ((strlen($value) <= 0) || (strlen($value) > 15))
 {
 throw new Exception("Invalid First Name");
 }
 return $value;
 }

Chapter 2 ■ Simple Arrays

31

 function validate_last_name(string $value) : string
 {
 If ((strlen($value) <= 0) || (strlen($value) > 20))
 {
 throw new Exception("Invalid Last Name");
 }
 return $value;
 }
 function validate_address(string $value) : string
 {
 If ((strlen($value) <= 0) || (strlen($value) > 30))
 {
 throw new Exception("Invalid Address");
 }
 return $value;
 }

 function validate_city(string $value) : string
 {
 If ((strlen($value) <= 0) || (strlen($value) > 20))
 {
 throw new Exception("Invalid City");
 }
 return $value;
 }
 function validate_state(string $value) : string
 {
 If ((strlen($value) <= 0) || (strlen($value) > 2))
 {
 throw new Exception("Invalid State");
 }
 return $value;
 }
 function validate_zip_code(string $value) : string
 {
 If ((strlen($value) <= "11111") || (strlen($value) > "99999"))
 {
 throw new Exception("Invalid Zip Code");
 }
 return $value;
 }
?>

The validation methods shown in this example validate the values for the same type of information as
was shown on the html form. For example first_name is alphabetic, with 15 or fewer characters. If the data
is not valid, a user exception can be thrown and then caught by the calling program to inform the user of any
problems.

Remember that the values have already been validated in the html form. If the data is not valid when
it arrives in the PHP program, then the data was corrupted. It is logical and appropriate that an exception
should be raised when this occurs.

Chapter 2 ■ Simple Arrays

32

The validate_first_name function shown uses strnlen to determine if the string passed from the html
form meets these requirements. If it does, the value is returned so it can be placed into the $first_name
property. If the information is not valid an exception is thrown with the message “Invalid First Name.”

Once these statements execute, the customer information is stored in memory and can be accessed
by the program. If this was a complete program, the information would also be stored in a location external
to the program (such as a database or cloud location) before the program completes execution. Once
the program execution ends, the data is no longer accessible in memory. When a program completes,
the garbage collector of the operating system is notified that the memory space is no longer needed. The
garbage collector then takes the responsibility to reassign the memory space for other uses.

This process becomes more complicated, however, if the program needs the ability to store information
from multiple customers.

$c1_first_name = ...
$c1_last_name = ...
$c1_address = ...
$c1_city = ...
$c1_state = ...
$c1_zip_code = ...
$c2_first_name = ...
$c2_last_name = ...
$c2_address = ...
$c2_city = ...
$c2_state = ...
$c2_zip_code = ...

The programmer could choose to create properties for every customer, in a format similar to the
preceding. However, there are several problems with this approach. First, the programmer might end
up having to create a lot of properties to handle a lot of customers. If in this example we expect just 100
customers, we would need 600 properties to hold all the information! This does not seem very reasonable
or very efficient. Second, in most cases the programmer and the company do not know exactly how many
customers will exist. It is probably not possible to determine an exact number. This is where arrays come in
handy.

An array is nothing more than a container of multiple properties. The array is given a name (such
as $customer_records) using the same syntax as a property. This one name is then used for storing and
reviewing every value in the array. Since the same name is used to access every value in the array, there
needs to be a way to determine where a value is being stored or retrieved. This is done by using a subscript.
In most languages a subscript is a numerical value. However, as we will see later, PHP arrays also allow
alphabetic subscripts.

■■ Note  PHP actually has only one type of arrays. This type allows numerical or alphabetic subscripts. The
term “Associative Arrays” is used to describe PHP arrays with alphabetic subscripts. However, all PHP arrays are
stored in memory in the same format. We will discuss associative arrays a little later.

We can replace the individual properties (such as $first_name) with the array name plus a subscript
($customer_records[0]).

Chapter 2 ■ Simple Arrays

33

Example 2-4.  process_customer_record.php

<?php
// accepts information from example1.html
// This is NOT a complete program.
//The validate methods shown need to be created to clean any input
$customer_record[0] = validate_first_name($_POST['first_name']);
$customer_record[1] = validate_last_name($_POST['last_name']);
$customer_record[2] = validate_address($_POST['address']);
$customer_record[3] = validate_city($_POST['city']);
$customer_record[4] = validate_state($_POST['state']);
$customer_record[5] = validate_zip_code($_POST['zip_code']);
print "Your name is $customer_record[0] $customer_record[1].";
print "You live at $customer_record[2], $customer_record[3]";
print " $customer_record[4], $customer_record[5]";
?>

In Example 2-4, the individual records are replaced with locations within the array $customer_record to
store the values retrieved. In most programming languages, array subscripts must be numbered beginning
with zero. Unlike many other languages, PHP allows us to dynamically create our array locations when
needed (as shown in Example 2-4). This allows us store and revive values in an array in a similar way to
storing and retrieving values in properties.

In PHP, we do not have to include the subscript when storing values into an array.

Example 2-5.  process_customer_record.php

// accepts information from example1.html
// This is NOT a complete program. The validate methods shown //need to be created to clean
any iinput
$customer_record[] = validate_first_name($_POST['first_name']);
$customer_record[] = validate_last_name($_POST['last_name']);
$customer_record[] = validate_address($_POST['address']);
$customer_record[] = validate_city($_POST['city']);
$customer_record[] = validate_state($_POST['state']);
$customer_record[] = validate_zip_code($_POST['zip_code']);
print "Your name is $customer_record[0] $customer_record[1].";
print "You live at $customer_record[2], $customer_record[3],";
print "$customer_record[4], $customer_record[5].";
?>

We do, however, still need to understand that the array subscripts will be automatically assigned a
number (beginning with 0) as each value is placed in the array. Example 2-4 and Example 2-5 actually
produce the same array. Notice, in Example 2-5, to retrieve the individual values in the array, we still have
to be aware of the subscript. We can use a foreach loop to pull all values without knowing the subscript (as
we will see shortly). We can also use the PHP function print_r as seen in the following to quickly view all
contents of an array.

PHP arrays have several advantages over arrays in other languages.

$customer_record[0] =
 validate_first_name($_POST['first_name']);
$customer_record[2] =
 validate_last_name($_POST['last_name']);

Chapter 2 ■ Simple Arrays

34

If a position in an array is not given an initial value in a language like Java, that position would hold a
null value. A null value is not zero, and it is not empty. If the Java program attempts to perform a calculation
on a value in the array that has not been given a value, the program would produce an error indicating that a
null value was in that position. If a position is skipped in a PHP array, that position merely does not exist.

print_r($customer_record);
Array ([0] => Fred [2] => Smith [3] => 123 Main Street [4] => Atlanta [5] => GA [6] =>
30001)

As you can see from the results of executing a print_r statement against a populated $customer_record
array, there is no position 1 that exists in the array.

You might wonder if this will cause any problems in retrieving values from the array.

Remember that when creating dynamic arrays in PHP we might not know how many positions are in
the array. You may have seen or been taught to use the for loop with arrays. The for loop is not the best
choice for retrieving values in a PHP array.

The foreach loop is a much better choice. This loop will automatically only retrieve positions that exist
in the array (it would skip position 1 in the preceding example) and automatically retrieve all positions of an
array.

foreach($customer_record as $value)
{
 print $value;
}

$customer_record is the name of the array. as is a required keyword. $value represents the value that
exists within the position that the method is currently accessing. $value can be assigned any name by the
programmer. It is a temporary property that holds the value in the current position in the array.

If we use this loop to print the values in the previous array, the loop would start at position 0 and print
the contents of the first position (Fred). The loop would then move to the next position in the array, position
2 (there is no position 1). It would print the contents of this position (Smith) and continue until all positions
in the array have been printed.

Fred Smith 123 Main Street Atlanta GA 30001

The foreach loop makes retrieving values from PHP arrays easy. Using this loop will eliminate any
possibility of trying to retrieve values from nonexistent positions in the array and also the possibility of going
beyond the end (size of) the array. The size and positions of an array could change at any time, and this
little foreach loop will still function properly. We will also discover that there are many PHP functions that
eliminate the need to use loops when reading, retrieving, or updating values in an array.

2.2 � Other Ways to Define Arrays
In PHP, if you know the initial values for an array, it can be created using a structure similar to other
languages.

$customer_record = array(‘Fred’, ‘Smith’, ‘123 Main Street’, ‘Atlanta’, ‘GA’, ‘30001’);
print_r($customer_record);
Array ([0] => Fred [1] => Smith [2] => 123 Main Street [3] => Atlanta [4] => GA [5] =>
30001)

Chapter 2 ■ Simple Arrays

35

In this example, we have initially created the array with a certain number of elements (six) and initial
values. PHP, like other languages, will automatically number the subscripts for each position, beginning at
zero. Since PHP stores all arrays in the same format, we can change the values in this array using the same
techniques we have discussed.

$customer_record[0] = ‘Pete’;
print_r($customer_record);
Array ([0] => Pete [1] => Smith [2] => 123 Main Street [3] => Atlanta [4] => GA [5] => 30001)

As you can see, Fred is replaced by Pete by passing a new value into the proper position.

What happens if we attempt to place a value in a position that does not exist?

$customer_record[6] = ‘7707777777’;
print_r($customer_record);
Array ([0] => Pete [1] => Smith [2] => 123 Main Street [3] => Atlanta [4] => GA [5] =>
30001 [6] => 7707777777)

As you can see, the array simply creates a new position and places the value in that position.

$customer_record[] = ‘7707777777’;

PHP arrays will automatically place new values at the end of the array if a position is not included.
This is not true in other languages. Many languages will indicate that you are out of bounds (you have
exceeded the size of the array). They will not let you add elements to the array unless you somehow increase
the size of the array.

In the format used in the preceding example, the original array contains the exact same information
and positions as the previous array. PHP allows us to easily append a value to the end of any existing array,
no matter how it was declared initially.

What happens if we load a number into a position in this array instead of a string?

$customer_record[5] = 30001;
Array ([0] => Pete [1] => Smith [2] => 123 Main Street [3] => Atlanta [4] => GA [5] => 30001)

The output of a print_r statement would produce similar results (because it makes no indication of the
data types of the individual values).

However, we can detect the difference if we first convert our array to JSON format (using the method
json_encode) and then display the results. We could also use the PHP var_dump method. We will look at
examples using this method in a later chapter.

$json = json_encode($customer_record);
print_r($json);
["Pete","Smith","123 Main Street","Atlanta","GA",30001]

41© Steve Prettyman 2017
S. Prettyman, PHP Arrays, DOI 10.1007/978-1-4842-2556-1_3

CHAPTER 3

Multidimensional Arrays

After completing this chapter, the student will be able to…

Define and describe the advantages in using multidimensional arrays

Compare a table with a multidimensional array

Create a multidimensional PHP array

Save values into a multidimensional PHP array

Display values in a multidimensional array

Add values from an html form into a multidimensional array

Validate values before placing them into a multidimensional array

Convert JSON data read from a text file into a PHP array

Convert PHP arrays to JSON objects and save to a text file

Save array information to a MySQL Database

The previous chapter showed us how efficient arrays can be.
However, the question that was not answered is

“How do we handle data from multiple customers?”

A simple array holds information that is related to a particular individual component, such as a
customer. In order to hold all of a customer’s information in memory, we must think in more than one
dimension. We need to have the ability to hold multiple components of customer information. We can think
of a doctor’s office (before everything became computerized) keeping records of each patient in a file, with
all the files for all the patients being stored within a file cabinet.

Multidimensional arrays work in a similar way. A customer’s information is stored in a ‘record’ (similar
to the file in the doctor’s office). In our previous example, all of the information related to Fred Smith is kept
together in a ‘record’. Multiple records (just like the file cabinet) are kept together in a ‘table’. The ‘table’
would contain all of the customer records.

Spreadsheets work in the same way.
In Table 3-1, four customers exist within the table. In a spreadsheet or in a program, the information for

each customer is contained in a record (also referred to as a row). Each row has the same type of information
in each column. For example, the first column contains the first name of each of the customers.

Chapter 3 ■ Multidimensional Arrays

42

This table contains six columns and four rows. However, remember that spreadsheets and programs
begin the numbering of elements with zero, not one. The uppermost left element (which contains “Pete”)
resides in row zero and column zero (0, 0). The lowermost right element (30018) resides in row three and
column 5 (3, 5).

What resides in row 2 and column 2? “111 Peachtree Street”

Why do we say row x and column y, not column y and row x?

The answer lies in how the information is stored in memory. The operating system stores two-
dimensional arrays by row. The rows are kept intact because everything in a row is related (all of Pete Smith’s
information). The row information is placed in memory locations that are contiguous to each other (next
to each other). Other rows are not necessarily stored in memory next to previous rows. This allows the
operating system to be efficient with memory storage.

When retrieving data from a two-dimensional array, we usually retrieve or look at a row of information
at a time (such as all of Pete Smith’s information). This in turn allows the operating system to go to one
continuous area of memory to pull the information. When a column of information is needed, less efficiently
occurs, because the operating system might need to go to several noncontiguous locations in memory to
retrieve the information.

When we store information into a table, or array, we also (usually) store a complete row of information
first (all of Pete Smith’s information) before storing another row of information. This again maps to the
operating system storing all the related information into the same general location of memory before it saves
the next row of information (possibly at a completely different location in memory).

All this just reminds us to always list the row first and then the column when saving or retrieving
information in a two-dimensional array.

print $customer_record[0];

In Chapter 1, we discovered that the preceding statement would print out the first name of the customer
(‘Pete’). However, if the array is two-dimensional, this statement will pull the complete first row, instead of
the first record. To read a specific record, both the row and column must be specified.

print $customer_record[1][0];

In this statement, the first subscript indicates row (1), and the second subscript indicates column (0). If
Table 3-1 is an array, this statement would print Sally.

What would print $customer_record[2][4]; display? GA

Table 3-1.  Customers Table

First Name Last Name Address City State Zip Code

“Pete” “Smith” "123 Main Street" “Atlanta” “GA” 30001

“Sally” “Parisi” “101 South Street” “Atlanta” “GA” 30001

“Jake” “Boukari” “111 Peachtree Street” “Atlanta” “GA” 30011

“Cap” “Hill” “1112 Ptree-Dunwoody Rd” “Atlanta” “GA” 30018

http://dx.doi.org/10.1007/978-1-4842-2556-1_1

Chapter 3 ■ Multidimensional Arrays

43

To dynamically create a two-dimensional array in PHP, we use almost the same statements that we used
for a single dimension.

$customer_record[0][0] = "Pete";
$customer_record[0][1] = "Smith";
$customer_record[0][2] = "123 Main Street";
$customer_record[0][3] = "Atlanta";
$customer_record[0][4] = "GA";
$customer_record[0][5] = 30001;
$customer_record[1][0] = "Sally";
$customer_record[1][1] = "Parisi";
$customer_record[1][2] = "101 South Street";
$customer_record[1][3] = "Atlanta";
$customer_record[1][4] = "GA";
$customer_record[1][5] = 30001;

Let’s look at what we see when we use the print_r method on the array we just created.

print_r($customer_record);
Array (
[0] =>
 Array ([0] => Pete
 [1] => Smith
 [2] => 123 Main Street
 [3] => Atlanta
 [4] => GA
 [5] =>30001)
[1] =>
 Array ([0] => Sally
 [1] => Parisi
 [2] => 101 South Street
 [3] => Atlanta
 [4] => GA
 [5] => 30001)
)

■■ Note  The print_r method will display the preceding information without the line breaks that have been added.

The outside array (Array ()) controls the rows, which are actually their own arrays. In this example,
there are two rows indicated by [0]=> and [1]=> (on the lines by themselves). Inside of each row is an Array
that controls the columns for that row. The first Array contains the information about Pete Smith. The second
Array contains information about Sally Parisi. You should notice that these arrays are exactly the same
format as the one-dimensional array that we discussed in Chapter 1. In PHP, two-dimensional arrays are
actually individual one-dimensional arrays held together by an array that surrounds them.

Can we create this two-dimensional array without specifying the subscript numbers (as shown with one-
dimensional arrays)?

When using the dynamic approach of creating the positions when needed, we have to tell PHP when to
start a new array or row (when to switch from the array which contains the Pete information to the array that
contains the Sally information). One way we can do this is by using a counting variable.

http://dx.doi.org/10.1007/978-1-4842-2556-1_1

Chapter 3 ■ Multidimensional Arrays

44

Example 3-1.  process_customer_twodim.php

<?php
$I = -1;
$customer_record[++$I][] = 'Pete';
$customer_record[$I][] = 'Smith';
$customer_record[$I][] = '123 Main Street';
$customer_record[$I][] = 'Atlanta';
$customer_record[$I][] = 'GA';
$customer_record[$I][] = 30001;
$customer_record[++$I][] = 'Sally';
$customer_record[$I][] = 'Parisi';
$customer_record[$I][] = '101 South Street';
$customer_record[$I][] = 'Atlanta';
$customer_record[$I][] = 'GA';
$customer_record[$I][] = 30001;
print_r($customer_record);
?>

In Example 3-1, A counting variable $I is created with an initial value of –1. In the next statement, the
variable is incremented before it is used (++$I). The value in the variable (0) is used to define the initial subscript
for the array containing the information for Pete. The remaining values for Pete are placed into the related array
using $I, which is still set to 0 each time. When it is time to create the array holding the information for Sally, the
counting variable is again incremented. This provides a subscript number of 1 for each value placed in the Sally
array. Notice that we did not need to provide a value for any of the positions with the Pete or Sally array.

However, this is not the most efficient way! This is not good coding. Don’t create your two-dimensional
arrays using this example!

What would happen if we didn’t place the counting variable or a number in the first subscript positions
(such as $customer_record[][] = ‘Pete’;)?

Each value for Pete and Sally would end up with its own array and only one subscript. Each of the two
subscripts would increment each time. Download Example 3-1 and remove every place that $I occurs and
run the program to see the mess it would produce!

We could eliminate the need for using the counting variable if we define the complete array at one time.

$customer_record = array (
 array('Pete' , 'Smith' , '123 Main Street' ,'Atlanta', 'GA', 30001),
 array('Sally' , 'Parisi' , '101 South Street' ,'Atlanta' , 'GA' , 30001)
);

This approach is a lot more efficient, taking a lot less code to create. It produces the same results as
Example 3-1. You do need to be careful to include all the required commas as shown in the preceding. Also
note that the semicolon is still needed at the end of the complete statement.

We can still change and add additional values in the array using the approach we have seen before.

$customer_record[0][0] = 'Peter';
$customer_record[0][6] ='770-770-7777';
$customer_record[2] =
 array('Jake' , 'Boukari' ,'111 Peachtree Street' , 'Atlanta' ,'GA' , 30011);

Array (
 [0] =>
 Array ([0] => Pete [1] => Peter [2] => 123 Main Street [3] => Atlanta
 [4] => GA [5] => 30001 [6] => 770-770-7777)

Chapter 3 ■ Multidimensional Arrays

45

 [1] =>
 Array ([0] => Sally [1] => Parisi [2] => 101 South Street [3] => Atlanta
 [4] => GA [5] => 30001)

 [2] => Array ([0] => Jake [1] => Boukari [2] => 111 Peachtree Street [3] => Atlanta
 [4] => GA [5] => 30011)
)

PHP arrays allow a lot of flexibility. We are able to change a value in the original array (replacing Pete
with Peter). We are able to add another value to the array containing Peter information (the array now
contains his phone number). We were also able to add a completely new array inside the customer_record
array (There is now a Jake array). To accomplish some of these tasks in other programming languages would
take a lot more code.

However, we are not dynamically creating the array as we have seen previously. Soon we will see an example
showing us how to dynamically create an array and add rows without knowing the size of the current array.

3.1 � Html Arrays
This is all pretty neat, but can we still easily add customer information coming from a web page into our
two-dimensional array as we did in Chapter 1?

The answer is YES!

Example 3-2.  example2_array.html

<!DOCTYPE html>
<html lan='en'>
<head>
<title>Customer Information Form</title>
</head>
<body>
<form method='post' action='process_customer_array_twodim.php'>
<h2> Please enter information in all fields</h2>
First Name <input type='text' pattern='[a-zA-Z]*' title='15 or less alphabetic characters'
maxlength='15' name='customer_record[0]' id='customer_record[0]' />

Last Name <input type='text' pattern='[a-zA-Z]*' title='20 or less alphabetic characters'
maxlength='20' name='customer_record[1]' id='customer_record[1]' />

Address <input type='text' title='30 or less characters' maxlength='30' name='customer_
record[2]' id='customer_record[2]' />

City <input type='text' pattern='[a-zA-Z]*' title='20 or less characters' maxlength='20'
name='customer_record[3]' id='customer_record[3]' />

State <input type='text' pattern='[a-zA-Z]*' title='2 characters' maxlength='2'
name='customer_record[4]' id='customer_record[4]' />

Zip code <input type='number' min='11111' max='99999' title='5 numerical characters'
name='customer_record[5]' id='customer_record[5]' />

<input type='submit' value="Click to submit your information" />
</form>
</body>
</html>

The only change made to the html file (Example 3-2) is to change the name of the PHP program called
(process_customer_array_twodim.php).

http://dx.doi.org/10.1007/978-1-4842-2556-1_1

Chapter 3 ■ Multidimensional Arrays

46

Example 3-3.  process_customer_array_twodim.php

<?php
$customer_record = array (
 array('Pete' , 'Smith' ,
 '123 Main Street' , 'Atlanta', 'GA', 30001),
 array('Sally' , 'Parisi' , '101 South Street' ,
 'Atlanta' , 'GA' , 30001)
);
$customer = filter_input_array(INPUT_POST);
$customer_info =validate_array($customer["customer_record"]);
array_push($customer_record, $customer_info);
print_r($customer_record);
?>

In Example 3-3, a two-dimensional array ($customer_record) is declared. The process to add the html
data to the array requires only one additional line to be added to the example from Chapter 1. The PHP
method array_push determines the size of an existing array and adds values to the end of an existing array.
$customer_info contains the array of values the customer entered into the html form. array_push attaches
this array to the end of the $customer_record array.

Array (
[0] =>
Array ([0] => Pete [1] => Smith [2] => 123 Main Street [3] => Atlanta [4] => GA [5] =>
30001)
[1] =>
Array ([0] => Sally [1] => Parisi [2] => 101 South Street [3] => Atlanta [4] => GA [5] =>
30001)
[2] =>
Array ([0] => Fred [1] => Smith [2] => 123 Main Street [3] => Atlanta [4] => GA [5] =>
30001))

All the values were appended to the end of the array with just one code statement!

■■ Note  We could also use array_push to add the Jake information shown in a previous example.

array_push($customer_record, array('Jake' , 'Boukari' , '111 Peachtree Street' , 'Atlanta' ,
'GA' , 30011));

This would eliminate the need to use a subscript (2 was used in the previous Jake example).
Let’s take this example a step closer to the “real world.” One shortcoming of this example is that the

information is lost when the program ends. We can make a few changes to the code to read and save our
array using a text file.

■■ Note  In the “real world,” this information would probably be saved in a database. However, this example
gives you a general idea of how easy it is to save information with PHP.

http://dx.doi.org/10.1007/978-1-4842-2556-1_1

Chapter 3 ■ Multidimensional Arrays

47

Example 3-4.  process_customer_array_twodim_saved.php

<?php
$customer_file = file_get_contents("customer_data.json");
$customer_record = json_decode($customer_file, TRUE);
$customer = filter_input_array(INPUT_POST);
$customer_info = validate_array($customer["customer_record"]);
array_push($customer_record, $customer_info);
print_r($customer_record);
file_put_contents("customer_data.json", json_encode($customer_record));
?>

A lot happens in Example 3-4. The PHP method file_get_contents will dump all the contents of a file into
the property provided. The contents of the file customer_data.json are placed into the property $customer_
file (which makes it an array).

$customer_record = json_decode($customer_file, TRUE);

In this statement the contents of $customer_file are converted from JSON format to PHP array format
using the PHP function json_decode. The file itself contains JSON data. The array created is placed into
the property $customer_record. This automatically turns $customer_record into a two-dimensional array
(assuming that the information in the file is formatted correctly).

file_put_contents("customer_data.json", json_encode($customer_record));

After the html array is retrieved from the html form, added to the $customer_record array, and
displayed, it is time to store the updated information. The PHP function file_put_contents will dump the
contents of a property into a file. It will overwrite whatever is already in the file. It will also create the file if it
does not exist.

However, remember it is assumed that JSON data is stored in the file. To convert the array into JSON
format the PHP method json_encode is called. This converted JSON data is then stored in the file customer_
data.json.

In just seven lines of code an array is populated from a file, data is retrieved from an html form and
added to the array, and the data is then stored back into the file.

Let’s make one last improvement to this program. If the data contained within the file is not a valid
JSON format, PHP will produce an error message. Let’s add some code to keep our program from crashing if
the file is invalid or missing, or the data in the file not a valid JSON format.

Example 3-5.  process_customer_array_twodim_saved_ex.php

<?php
try
{
 $customer_file = file_get_contents("customer_data.json");
$customer_record = json_decode($customer_file, TRUE);
$customer =filter_input_array(INPUT_POST);
$customer_info =validate_array($customer["customer_record"]);
array_push($customer_record,$customer_info);
print_r($customer_record);
file_put_contents("customer_data.json", json_encode($customer_record));
}

Chapter 3 ■ Multidimensional Arrays

48

catch(Exception $e)
{

 print "An Exception occurred. Message: " . $e->getMessage();
}
catch(Error $e)
{

 print "An Error occurred. Message: " . $e->getMessage();

}

?>

In PHP 7, the try/catch blocks are used to capture Exceptions and Errors. Exceptions are “user”
exceptions that may be raised by the program. For example, a validation method (such as validate_zip_
code) determines if the ZIP code information received from the html form is in the proper format. If the
information is not valid, the method can raise an exception for the calling program to handle. If this occurred
the flow of the code would jump to a catch

Chapter 3 ■ Multidimensional Arrays

56

This update method actually also allows us to also input values in existing positions because
the only difference between insert and update is whether there is actually something already in the
position.

Every program language has the ability to create arrays for even more dimensions. However, programs
become less efficient with each additional dimension. With additional dimensions the operating system
must build additional tables in memory to keep track of the location of the data. The logic quickly becomes
more complex. It becomes more difficult for humans to relate beyond three or four dimensions (height,
width, length, time???). This is why you rarely will see programs that contain arrays with more than three (or
four) dimensions.

We have come a long way in a short period of time. Let’s take another break and do some practice exercises.

EXERCISES

(You can download all working examples from this chapter at www.littleoceanwaves.com/arrays/)

1.	 Adjust Exercise 1-1 from Chapter 1 to pull book information from a file, create a
two-dimensional array from the file, accept information about a book from an html
form, add the information to the array, and store the information. Use the code from
Example 3-4 or Example 3-5 to help you.

Before you can read from a file there need to be records in the file. Add the code to
save the array into the file first. Then run the program. Verify that the information
was saved properly in the file. Then add code to read from the file.

2.	 Compare the PHP code used in this chapter to create and update two-dimensional
arrays to another programming language. Which is easier and more efficient? Why?
If you don’t have other language examples, search the Web using the language
name and arrays, such as the following:

“Creating and updating multidimensional arrays in Java”

http://D:\\Sadam\\2016\\XML\\Nov\\20161115\\Preettyman\\XML\\Chapter3\\www.littleoceanwaves.com\\arrays\\
http://dx.doi.org/10.1007/978-1-4842-2556-1_1

57© Steve Prettyman 2017
S. Prettyman, PHP Arrays, DOI 10.1007/978-1-4842-2556-1_4

CHAPTER 4

Associative and Object Arrays

After completing this chapter, the student will be able to…

Define and describe the advantages in using associative arrays

Create a simple PHP associative array

Save values into a simple PHP associative array

Display values contained in simple PHP associative array

Create a multidimensional PHP associative array

Save values into a multidimensional PHP associative array

Display values contained in a multidimensional associative array

Add values from an html form into a multidimensional associative array

Validate values before placing them into an associative array

Define and describe the advantages in using an object array

Create a simple PHP object array

Save values into a simple PHP object array

Add values from an html form into a PHP object array

Display values contain in a simple PHP object array

Validate values before placing them into a simple PHP object array

So far all the examples have included arrays that use numeric subscripts. They are not very descriptive.
For example:

print customer_record[5];

If we ran across this statement in program code, we could determine that the array contains a customer’s
record. However, what the heck is in position 5? We would not know unless we viewed some actual data in the
array itself. PHP allows developers to use alphabetic characters instead of numbers for subscripts.

print customer_record['zip_code'];

In this example, the subscript is now much more readable. We now know that only zip code information
will reside in this area of the array. Arrays that contain alphabetic characters in PHP are commonly called
Associative Arrays.

Chapter 4 ■ Associative and Object Arrays

58

Some students get lost when learning about Associative Arrays. However, there is no reason to panic.
You have already seen them used in every example in this book!!

What?
Yes, remember, it was mentioned in Chapter 1 that all arrays are the same in PHP. All arrays are

Associative Arrays. The only difference between what we discussed before and now is what is placed in the
subscript. See Example 4-1:

Example 4-1.  process_customer_record.php

<?php
// This program accepts information from example1.html
// This is NOT a complete program. The validate
// methods shown need to be created to clean any input.

$customer_record[0] =
 validate_first_name($_POST['first_name']);
$customer_record[1] =
 validate_last_name($_POST['last_name']);
$customer_record[2] =
 validate_address($_POST['address']);
$customer_record[3] =
 validate_city($_POST['city']);
$customer_record[4] =
 validate_state($_POST['state']);
$customer_record[5] =
 validate_zip_code($_POST['zip_code']);

print "Your name is $customer_record[0] $customer_record[1].";
print " You live at $customer_record[2], $customer_record[3],";
print "$customer_record[4], $customer_record[5]";

?>

The subscripts in this example are 0, 1, 2, 3, 4, and 5. That is not very descriptive. Instead, we can use words.

Example 4-2. 

<?php
// This program accepts information from example1.html
// This is NOT a complete program.
// The validate methods shown need to be created to clean any input.

$customer_record["first_name"] =
 validate_first_name($_POST['first_name']);
$customer_record["last_name"] =
 validate_last_name($_POST['last_name']);
$customer_record["address"] =
 validate_address($_POST['address']);
$customer_record["city"] =
 validate_city($_POST['city']);
$customer_record["state"] =
 validate_state($_POST['state']);

http://dx.doi.org/10.1007/978-1-4842-2556-1_1

Chapter 4 ■ Associative and Object Arrays

59

$customer_record["zip_code"] =
 validate_zip_code($_POST['zip_code']);

print "Your name is $customer_record['first_name'] $customer_record['last_name']. ";
print "You live at $customer_record['address'], $customer_record['city'],";
print "$customer_record['state'], $customer_record['zip_code']";

?>

If we replace each numerical subscript with a more meaningful alphabetic subscript, we produce a
program that is much more readable. For example, we see that the “first_name” value is accepted from the
html form via the $_POST method. The value in the property is validated by the validate_first_name method.
If it is valid, the information is placed into the $customer_record array at a location called (you guessed it!)
first_name. A similar process happens with all the other data retrieved.

■■ Note  Notice that the print statement uses single quotes around the subscript name (such as ‘first_name’)
instead of double quotes. You cannot embed double quotes inside of double quotes (which contain the complete
string to be printed). You can, in many cases but not all, use single quotes instead.

Let’s take a look at another previous example.

Example 4-3.  process_customer_array_twodim_saved.php

<?php
$customer_file = file_get_contents("customer_data.json");
$customer_record = json_decode($customer_file, TRUE);
$customer = filter_input_array(INPUT_POST);
$customer_info =
 validate_array($customer["customer_record"]);
array_push($customer_record, $customer_info);
print_r($customer_record);
file_put_contents("customer_data.json",json_encode($customer_record));
?>

In Example 4-3, a two-dimensional array is retrieved from a file, appended with information from an
html form, and saved into the original file. This array used numerical subscripts. We only need to change
one line to allow this code to handle an associative array that would exist in the customer_data.json file.

Example 4-4.  process_customer_associate_array_twodim_saved.php

<?php
$customer_file = file_get_contents("customer_data.json");
$customer_record = json_decode($customer_file, TRUE);
$customer = filter_input_array(INPUT_POST);
list(
 $customer_info['first_name'],
 $customer_info['last_name'],
 $customer_info['address'],
 $customer_info['city'],
 $customer_info['state'],

Chapter 4 ■ Associative and Object Arrays

60

 $customer_info['zip_code']
) = validate_array($customer["customer_record"]);

array_push($customer_record, $customer_info);
print_r($customer_record);
file_put_contents("customer_data.json", json_encode($customer_record));

?>

The PHP list is a language construct that can be used to assign values to multiple properties (variables)
at the same time. Before PHP 7, the values were actually assigned in reverse order. PHP 7 assigns them in the
order presented. Since we are using actual alphabetic values for our subscripts and not numerical values, the
order does not matter.

list(
 $customer_info['first_name'],
 $customer_info['last_name'],
 $customer_info['address'],
 $customer_info['city'],
 $customer_info['state'],
 $customer_info['zip_code']
) = validate_array($customer["customer_record"]);

This example code would work correctly in either order. The value from position 0 in the
customer_record array (which came from the html form) will be placed into $customer_info[‘first_name’].
The value in position 1 will be placed in $customer_info[‘last_name’]. The process would continue for the
number of positions in the customer_record array.

The number of properties in the list statement should be the same number as the positions in the array.
This example should include the previous try/catch blocks shown to capture any errors if there are not as many
positions in the array as expected. The try/catch block would also handle any problems with the file itself.

Array (
 [0] =>
Array ([first_name] => default [last_name] => default [address] => default [city] =>
default [state] => default [zip_code] => 10001)
[1] =>
 Array ([zip_code] => 11111 [state] => af [city] => ad [address] => aq [last_name] => as
[first_name] => aa)
)

By using associate arrays we don’t have to worry about the order in which values are saved. In the
preceding example, the two arrays are saved in reverse order. However, we access the values by the
alphabetic subscript names, not position. print $customer_record[0][‘first_name’] will display the value in
that location (default) no matter where it actually is located in the array.

Let’s look at the changes needed to retrieve and save the information in a MySQL database.

Chapter 4 ■ Associative and Object Arrays

61

Example 4-5.  process_customer_associate_array_twodim_mysqli.php

try
{

 $mysqli = new mysqli("localhostorwebsite","userid", "password", "database");
 $query = "SELECT * FROM customers";
 $result = $mysqli->query($query);
 $customer_record = $result->fetch_all(MYSQLI_ASSOC);
 $customer = filter_input_array(INPUT_POST);
 $customer_info = validate_array($customer["customer_record"]);
 array_push($customer_record, $customer_info);
 print_r($customer_record);
 �$query = "INSERT INTO customers(first_name, last_name, address, city, state, zip_

code) VALUES (";
 $query .= $customer_info[first_name’] . "," . $customer_info[‘last_name’] . ",";
 �$query .= $customer_info[‘address’] . "," . $customer_info[‘city’] . "," .

$customer_info[‘state’] ;
 $query . = "," . $customer_info[‘zip_code’] . ")";

 $result = $mysqli->query($query);
 $mysqli->close();
}
catch(Exception $e)
{
 // ... no changes in the try blocks

Very few changes are needed when handling associative arrays with MySQL.

$customer_record = $result->fetch_all(MYSQLI_ASSOC);

The result set identifier must be changed from returning a numeric array (MYSQLI_NUM), as shown in
the previous chapter, to return an associative array (MYSQLI_ASSOC).

$query .= $customer_info[first_name'] . "," . $customer_info['last_name'] . ",";
$query .= $customer_info['address'] . "," . $customer_info['city'] . ",";
$query .= $customer_info['state'] ;
$query . = "," . $customer_info['zip_code'] . ")";

The indexes used with each position in the customer_info array must also be changed from numeric
(0, 1, 2, 3, 4, 5) to alphabetic (‘first_name’, ‘last_name’, ‘address’, ‘city’, ‘state’, ‘zip_code’).

$customer_record = array (
 array('Pete' , 'Smith' , '123 Main Street' , 'Atlanta', 'GA', 30001),
 array('Sally' , 'Parisi' , '101 South Street' , 'Atlanta' , 'GA' , 30001)
);

We produce the expected results with just two line changes.

$query .= $customer_info[first_name'] . "," .$customer_info['last_name'] . ",";
$query .= $customer_info['address'] . "," . $customer_info['city'] . "," ;
$query .= $customer_info['state'] ;
$query . = "," . $customer_info['zip_code'] . ")";

Chapter 4 ■ Associative and Object Arrays

62

In Chapter 2 we declared an array and its values using the syntax shown in the preceding. When using
the same syntax to declare an associate array we must specify the index (alphabetic subscript name) and the
value together.

This is when it can get a little confusing. However, we will keep it as simple as possible.

$customer_record = array (
 array('first_name' => 'Pete' , 'last_name' => 'Smith' ,
 'address' => '123 Main Street' , 'city' => 'Atlanta',
 'state' => 'GA', 'zip_code' => 30001
),
 array('first_name' => 'Sally' , 'last_name' => 'Parisi' ,
 'address' => '101 South Street' , 'city' => 'Atlanta' ,
 'state' => 'GA' , 'zip_code' => 30001
)
);
print_r($customer_record);

Array (
[0] =>
Array ([first_name] => Pete [last_name] => Smith [address] => 123 Main Street [city] =>
Atlanta [state] => GA [zip_code] => 30001)
[1] =>
Array ([first_name] => Sally [last_name] => Parisi [address] => 101 South Street [city] =>
Atlanta [state] => GA [zip_code] => 30001)
)

To add an alphabetic subscript to this example we use the same syntax we discovered in foreach loops.
key => value is used to define each position in the array. The key is the subscript name (‘first_name’). The
value is the information placed in the location (‘Pete’).

'first_name' => 'Pete'
'last_name' => 'Smith'
'address' => '123 Main Street'
'city' => 'Atlanta'
'state' => 'GA'
'zip_code' => 30001

We can then retrieve a value using its subscript name.

print $customer_record[0]['last_name'];

Smith

Did you notice that the example did not change the subscript for the rows ([0],[1])?

The example did not specify any names for the rows. Remember that all arrays in PHP are the same.
There is nothing wrong with mixing numeric and alphabetic subscripts (as shown) in this array.

http://dx.doi.org/10.1007/978-1-4842-2556-1_2

Chapter 4 ■ Associative and Object Arrays

63

We can, however, provide a name for our rows if needed.

$customer_record = array (

 'first_customer' =>
 array('first_name' => 'Pete' , 'last_name' => 'Smith' ,
 'address' => '123 Main Street' ,
 'city' => 'Atlanta', 'state' => 'GA',
 'zip_code' => 30001),

 'second_customer' =>
 array('first_name' => 'Sally' , 'last_name' => 'Parisi' ,
 'address' => '101 South Street' ,
 'city' => 'Atlanta' , 'state' => 'GA' , 'zip_code' => 30001)
);

Array (
 [first_customer] =>
 Array ([first_name] => Pete
 [last_name] => Smith [address] => 123 Main Street
 [city] => Atlanta [state] => GA [zip_code] => 30001)
 [second_customer] =>
 Array ([first_name] => Sally
 [last_name] => Parisi [address] => 101 South Street
 [city] => Atlanta [state] => GA [zip_code] => 30001))

To add an alphabetic name to our rows, we, again, use the same key => value syntax. The only difference
is that the value is actually an array (the row).

Example 4-6.  foreachassociative.php

foreach($customer_record as $row => $row_array)
{
 foreach($row_array as $column => $column_value)
 {
 print "Row: $row Column: $column Value: $column_value
";
 }

print "
";

}

Row: first_customer Column: first_name Value: Pete
Row: first_customer Column: last_name Value: Smith
Row: first_customer Column: address Value: 123 Main Street
Row: first_customer Column: city Value: Atlanta
Row: first_customer Column: state Value: GA
Row: first_customer Column: zip_code Value: 30001
Row: second_customer Column: first_name Value: Sally
Row: second_customer Column: last_name Value: Parisi
Row: second_customer Column: address Value: 101 South Street
Row: second_customer Column: city Value: Atlanta
Row: second_customer Column: state Value: GA
Row: second_customer Column: zip_code Value: 30001

Chapter 4 ■ Associative and Object Arrays

64

There are no changes needed to the foreach loops shown previously to display or change values in an
associative array.

Why?

Again, all PHP arrays are the same. They have the same logic. Numeric, alphabetic, or a combination of
both types of subscripts does not make a major difference in how they are used.

4.1 � Deleting
Let’s return to one of our examples from Chapter 2.

Example 4-7.  deletesubscript2dim.php

declare(strict_types=1);
function delete_array_value(int $first_subscript, string $second_subscript)
{

 $customer_record = array (
 array('first_name' =>'Pete' ,'last_name' =>'Smith' ,
 'address' =>'123 Main Street' ,'city' => 'Atlanta',
 'state' =>'GA', 'zip_code' =>30001
),
 array('first_name' =>'Sally' ,'last_name' =>'Parisi' ,
 'address' =>'101 South Street' ,'city' => 'Atlanta' ,
 'state' =>'GA' , 'zip_code' => 30001
)
);

 unset($customer_record[$first_subscript][$second_subscript]);
}
delete_array_value(1,'last_name');

The same exact logic can be used to remove a value (or row) from an associate array. The only change
required is to change the data type accepted into the function from int to string. We could also just remove
the data type restrictions and the method would work for any array.

4.1.1 � Updating & Inserting
Actually we have already shown several examples on updating values in arrays in the previous chapters. Let’s
take a quick look at the small amount of changes need to handle associative arrays.

Example 4-8.  update-associative.php

declare(strict_types=1);
function update_array_value(int $subscript, $value)
{

 $customer_record = array (
 array('first_name' =>'Pete' ,'last_name' =>'Smith',
 'address' =>'123 Main Street' ,'city' => 'Atlanta',

http://dx.doi.org/10.1007/978-1-4842-2556-1_2

Chapter 4 ■ Associative and Object Arrays

65

 'state' =>'GA', 'zip_code' =>30001),
 array('first_name' =>'Sally' ,'last_name' =>'Parisi' ,
 'address' =>'101 South Street' ,'city' => 'Atlanta' ,
 'state' =>'GA' , 'zip_code' => 30001)
);

 $customer_record[$subscript] = $value;
}
$temp_array =
 array('first_name' =>'Pete' ,'last_name' =>'Smith' ,
 'address' =>'123 Main Street' ,'city' => 'Atlanta',
 'state' =>'GA', 'zip_code' =>30001);
update_array_value(0, $temp_array);

As shown before, this example totally replaces the Pete array with a Peter array. 0 is still passed into
$subscript because no name was provided for the arrays that hold records.

Example 4-9.  update_associative2.php

decltAe(strict_types=1);

function update_array_value(string $subscript, $value)

Chapter 4 ■ Associative and Object Arrays

67

 'city' => 'Atlanta' , 'state' => 'GA' ,
 'zip_code' => 30001
)
);

 $customer_record[$first_subscript][$second_subscript] = $value;

}
update_array_value(‘first_customer’,'first_name', "Peter");

Let’s revisit the method that combines these ideas.
If we are using an array with numeric subscript, we can insert into a missing subscript. Also, we can

append our new values to the end of the array as we have done in several examples. With associate arrays
the actual physical location of the information in the array does not matter since we are referencing our
information using alphabetic subscripts.

Example 4-12.  insert_update_associative.php

declare(strict_types=1);

function update_array_value($value, string $first_subscript = "none",
 string $second_subscript = "none")
{

 $customer_record = array (
 array('Pete' ,'Smith' ,'123 Main Street' , 'Atlanta','GA', 30001),
 array('Sally' ,'Parisi' ,'101 South Street' , 'Atlanta' , 'GA' , 30001)
);

 If($first_subscript != "none" && $second_subscript != "none")
 {
 $customer_record[$first_subscript][$second_subscript] = $value;
 }
 else if ($first_subscript != "none")
 {
 $customer_record[$first_subscript] = $value;
 }
 else
 {
 array_push($customer_record, $value); }
 }
$temp_array =
 array('Jackie' ,'Smith' , '123 Main Street' ,'Atlanta','GA', 30001);
update_array_value("770-777-7777", "second_customer", "phone_number");
update_array_value($temp_array, "second_customer");
update_array_value($temp_array);

As mentioned before, this update method allows us to insert individual values into any missing
positions (or actually replace values from current positions). If both positions are provided (“second_
customer”, “phone_number”) the method will use both positions to update a value (in this example, the
phone number is actually added with a subscript of phone_number to the end of the Sally array). If only one

Chapter 4 ■ Associative and Object Arrays

68

position is provided, the second position ($second_subscript) will default to “none.” If the array is
two-dimensional (as shown here) an array could be passed to completely replace the existing array (row).

update_array_value($temp_array,"second_customer");

The second call to this method will replace the Sally array with the Jackie array.

update_array_value($temp_array);

If no positions are passed, the method will set $first_subscript and $second_subscript to “none.” This will
cause the method to execute the else part of the if statement, which will use array_push to add the array to
the end of the existing array. A numeric subscript (0) will be created to hold the new row.

This update method actually also allows us to input values in existing positions, because the only
difference between insert and update is whether there is actually something already in the position.

Hopefully you can now see that associative arrays are a great tool provided by PHP. Code using
associative arrays is much more readable. There is also no efficiency difference because all arrays in PHP are
stored in memory in the same manner.

4.2 � Object Arrays
Let’s take a brief look at an Object Array. If you are not familiar with Object-Oriented Programming, you can
skip this section without it causing you any difficulty in Chapter 5.

<?php
class Customer
{
 // all code placed here
}
?>

PHP classes are created using the class keyword followed by a class name. Class names should be
indicated with a capital first letter (Customer). All code is then encapsulated (contained) when the {}. If the
class is contained in a separate file, the filename should match the class name (Customer.php).

class Customer
{
 private $first_name = "NFN";
 private $last_name = "NLN";
 private $address = "NA";
 private $city = "NC";
 private $state = "NS";
 private $zip_code = "NZC";
}

Properties are protected using the private keyword. Each property shown has been given a default
value. However, the value will be changed when the user “sets” the property. Set methods are used to change
property values. Get methods are used to retrieve property values.

http://dx.doi.org/10.1007/978-1-4842-2556-1_5

Chapter 4 ■ Associative and Object Arrays

A

Associative and Object Arrays

73

We could also use an associative array by just changing the subscripts ($value[‘first_name’];).
This new constructor makes passing an html array very easy. We can just change one line from our

previous example.

Example 4-14.  customer_object.php

<?php
// ... Customer class structure goes here
$customer =filter_input_array(INPUT_POST);

$customer_record[] =
 new Customer($customer["customer_record"]);
var_dump($customer_record);

$customer_record[] = new Customer($customer["customer_record"]);

The customer_record html array is pulled from the customer array, which was populated by values
entered by the user in the html form. A Customer object is created. The customer_record array is passed into
the constructor of the Customer object.

function __construct($value)

The constructor renames the array as $value.

set_first_name($value[0]);
set_last_name($value[1]);
set_address($value[2]);
set_city($value[3]);
set_state($value[4]);
set_zip_code($value[5]);

The values in each position of the $value array are then passed into set methods to populate the new
Customer object properties. Finally, the Customer object is attached to the PHP $customer_record array at
position 0 (or the next available position).

All of this action takes place because of the one line!

array(1)
 { [0]=> object(Customer)#1 (6)
 { ["first_name":"Customer":private]=> string(4) "fred"
 ["last_name":"Customer":private]=> string(5) "smith"
 ["address":"Customer":private]=> string(15) "123 Main Street"
 ["city":"Customer":private]=> string(8) "Marietta"
 ["state":"Customer":private]=> string(2) "GA"
 ["zip_code":"Customer":private]=> string(5) "11111"
 } }

In the example, var_dump was used, instead of print_r, to provide a more detailed view of the array.
We can see that the Customer object is attached at position 0 of the customer_record array with a first_name
(“fred”) and last_name (“smith”).

There is much more we could discover about object arrays. However, the intent is just to get your feet wet.
Why would we use object arrays instead of associative arrays?

Chapter 4 ■ Associative and Object Arrays

74

One good example is provided in the gaming industry. In many games, once the user obtains a certain
expert level, they are invited to play a bonus round. In order to jump to the bonus round all information
related to the current level the user has obtained must be saved. All things on the screen (including the
aliens) are objects. These objects can be temporarily saved to an object array while the user plays the bonus
round. When the user has completed the round, the objects can be retrieved from the array and placed
back into their original positions on the screen. Each object would include properties to indicate their last
location to complete this process.

We are already done discussing Associative and Object Arrays. As we have seen, only a few coding
changes are needed to use associative arrays instead of numerical arrays. Associative arrays allow us to
create much more readable code syntax. We no longer need to try to figure out what $customer_record[0]
contains. We can see that $customer_record[‘first_name’] will hold a first name.

Let’s try an exercise before Chapter 5.

EXERCISES

(You can download all working examples from this chapter at www.littleoceanwaves.com/arrays/)

1.	 Adjust Exercise #1 from Chapter 2 to pull book information from a file, create a
two-dimensional Associative Array from the file, accept information about a book
from an html form, add the information to the Associative Array, and store the
information. Use the code from Example 4-4 to help you.

Before you can read from a file there needs to be associative JSON records in the
file. Add the code to save the array into the file first. Then run the program. Verify that
the information was saved properly in the file. Then add code to read from the file.

2.	 What other programming languages have Associate Arrays? Give an example of the
syntax to create one in another language.

http://dx.doi.org/10.1007/978-1-4842-2556-1_5
http://D:\\Sadam\\2016\\XML\\Nov\\20161115\\Preettyman\\XML\\Chapter4\\www.littleoceanwaves.com\\arrays\\
http://dx.doi.org/10.1007/978-1-4842-2556-1_2

75© Steve Prettyman 2017
S. Prettyman, PHP Arrays, DOI 10.1007/978-1-4842-2556-1_5

CHAPTER 5

PHP Functions—Changing,
Splitting, Slicing, and Sorting Arrays

After completing this chapter, the student will be able to…

Create a simple PHP program which changes the contents of an existing array

Create a simple PHP program which splits an array based on a value or
comparison

Create a simple PHP program which slices an array based on a value or
comparison

Create a simple PHP program which sorts an array based on a value, comparison,
or key

In this chapter we will take a brief look at the PHP functions that are available to change, split, slice,
and sort arrays. Many of these functions work with multiple array types (single, multidimensional, and/or
associative).

All descriptions of the following functions are provided by the online PHP manual available at
www.php.net. Brief examples using each function and a description of the results of these examples are
provided. These examples are only meant to get your feet wet. For a more detailed description of the
functions shown, and for more examples, visit the online PHP manual.

5.1 � Changing Array Contents
array_change_key_case

changes the key to uppercase or lowercase

“Returns an array with its keys lower or uppercased, or FALSE if array is not an array.”

Syntax:

array array_change_key_case (array $array [, int $case = CASE_LOWER])

Example:

$test_array = array('firstname' => 'Jeff', 'lastname' => 'Smith');
print_r(array_change_key_case($test_array, CASE_UPPER));

http://www.php.net/
http://www.php.net/

Chapter 5 ■ PHP Functions—Changing, Splitting, Slicing, and Sorting Arrays

76

Output:

Array
(
 [FIRSTNAME] => Jeff
 [LASTNAME] => Smith
)

In this example, the keys (FIRSTNAME, LASTNAME) are uppercased.

array_fill

fill an array with values

Fills an array with num entries of the value of the value parameter, keys starting at the
start_index parameter.

Syntax:

array array_fill (int $start_index , int $num , mixed $value)

First parameter is the starting index. Second parameter is the ending index.

Example:

$default_array = array_fill(1, 8, 'default');

print_r($default_array);

Output:

Array (
 [1] => default
 [2] => default
 [3] => default
 [4] => default
 [5] => default
 [6] => default
 [7] => default
 [8] => default
)

In this example, 1 and 8 are passed, providing the starting and ending keys. Default is also passed
providing the value used to fill the array.

array_fill_keys

fills an array with values, specifying keys

“Fills an array with the value of the value parameter, using the values of the keys array as keys.”

Syntax:

array array_fill_keys (array $keys , mixed $value)

Example:

$keys = array('first_name', 'last_name', 'address', 'city', 'state', 'zip');
$default_array = array_fill_keys($keys, 'default');
print_r($default_array);

Chapter 5 ■ PHP Functions—Changing, Splitting, Slicing, and Sorting Arrays

77

Output:

Array (
 [first_name] => default
 [last_name] => default
 [address] => default
 [city] => default
 [state] => default
 [zip] => default
)

In this example, the $keys array is used to supply the key. The word ‘default’ is used to fill each position.

array_filter

filters elements of an array using a callback function

“Iterates over each value in the array passing them to the callback function. If the callback
function returns true, the current value from array is returned into the result array. Array
keys are preserved.”

This function can be used in several ways to filter out content you don’t want in your array.
You can create a function to filter out unwanted data types that exist in the array or use existing PHP

functions.

Syntax:

array array_filter (array $array [, callable $callback [, int $flag = 0]])

Example:

$first_array = array('first_name' => 'Pete' , 'last_name' => 'Smith' , 'address' => '123
Main Street' , 'city' => 'Atlanta', 'state' => 'GA', 'zip' => 30001);

function filter_array($unfiltered_value)
{
 if(is_string($unfiltered_value))
 {
 return $unfiltered_value;
 }
}

print_r(array_filter($first_array, "filter_array"));

Output:

Array (
 [first_name] => Pete
 [last_name] => Smith
 [address] => 123 Main Street
 [city] => Atlanta
 [state] => GA
)

Chapter 5 ■ PHP Functions—Changing, Splitting, Slicing, and Sorting Arrays

78

This example would filter out anything that is not a string.
Without a function, it will filter out empty strings, NULL, or FALSE.

Example:

$first_array = array('first_name' => '' , 'last_name' => NULL , 'address' => FALSE , 'city'
=> 'Atlanta', 'state' => 'GA', 'zip' => 30001);

print_r(array_filter($first_array));

Output:

Array (
 [city] => Atlanta
 [state] => GA
 [zip] => 30001
)

A PHP compare function can be used instead of a user-defined function. These could include strcmp,
strcasecmp, strncasecmp, substrcomp, or other PHP comparison functions that return < 0, 0, or > 0 as a
result.

array_flip

exchanges all keys with their associated values in an array

“array_flip() returns an array in flip order, i.e. keys from array become values and
values from array become keys.”

Syntax:

array array_flip (array $array)

Example:

$first_array = array('first_name' => 'Pete' , 'last_name' => 'Smith' , 'address' => '123
Main Street' , 'city' => 'Atlanta', 'state' => 'GA', 'zip_code' => 30001);

$result = array_flip($first_array);

print_r($result);

Output:

Array (
 [Pete] => first_name
 [Smith] => last_name
 [123 Main Street] => address
 [Atlanta] => city
 [GA] => state
 [30001] => zip_code
)

Chapter 5 ■ PHP Functions—Changing, Splitting, Slicing, and Sorting Arrays

79

In this example, the keys and values in array $first_array are reversed.

array_pad

pads an array to the specified length with a value

“array_pad() returns a copy of the array padded to size specified by size with value
value. If size is positive then the array is padded on the right, if it's negative then on
the left.”

Syntax:

array array_pad (array $array , int $size , mixed $value)

Example:

$first_array = array('Pete' , 'Smith' , '123 Main Street' , 'Atlanta', 'GA', '30001');
$second_array = array('Sally' , 'Parisi' , '101 South Street' , 'Atlanta' ,'GA' , '30001');

$first_array = array_pad($first_array, 8, "No Value");
$second_array = array_pad($second_array, -8, "No Value");

print_r($first_array);
print_r($second_array);

Output:

Array (
 [0] => Pete
 [1] => Smith
 [2] => 123 Main Street
 [3] => Atlanta
 [4] => GA
 [5] => 30001
 [6] => No Value
 [7] => No Value
)

Array (
 [0] => No Value
 [1] => No Value
 [2] => Sally
 [3] => Parisi
 [4] => 101 South Street
 [5] => Atlanta
 [6] => GA
 [7] => 30001
)

first_array now has two additional elements at the end of the array. The length of the original array was 6.
The padding size entered was 8. Thus, two extra positions are created.

Second_array now has two additional elements at the front of the array. The padding size entered was –8.

Chapter 5 ■ PHP Functions—Changing, Splitting, Slicing, and Sorting Arrays

80

array_pop

pops the element off the end of array

“array_pop() pops and returns the last value of the array, shortening the array by
one element.”

Syntax:

mixed array_pop (array &$array)

Example:

$first_array = array('Pete' , 'Smith' ,'123 Main Street' , 'Atlanta', 'GA', '30001');

print array_pop($first_array);

print_r($first_array);

Output:

30001

Array (
 [0] => Pete
 [1] => Smith
 [2] => 123 Main Street
 [3] => Atlanta
 [4] => GA
)

The last element of $first_array is pulled from the array and displayed via the print statement. The array
size is now one less than originally.

array_push

pushes one or more elements onto the end of array

“array_push() treats an array as a stack, and pushes the passed variables onto the
end of array. The length of array increases by the number of variables pushed.”

Syntax:

int array_push (array &$array , mixed $value1 [, mixed $...])

Example:

$customer_recrod = array (
 array('Pete' , 'Smith' , '123 Main Street' ,'Atlanta', 'GA', 30001),
 array('Sally' , 'Parisi' , '101 South Street' ,'Atlanta' , 'GA' , 30001)
);

$customer_info = array('Be' , 'Happy' ,'111 North Street' , 'Atlanta' , 'GA' , 30001);
array_push($customer_record, $customer_info);
print_r($customer_record);

Chapter 5 ■ PHP Functions—Changing, Splitting, Slicing, and Sorting Arrays

81

Output:

Array (
[0] =>
Array (
[0] => Pete [1] => Smith [2] => 123 Main Street [3] => Atlanta [4] => GA [5] => 30001
)
[1] =>
Array (
[0] => Sally [1] => Parisi [2] => 101 South Street [3] => Atlanta [4] => GA [5] => 30001
)
[2] =>
Array (
[0] => Be [1] => Happy [2] => 111 North Street [3] => Atlanta [4] => GA [5] => 30001
)
)

array_push adds the Be Happy array to the end of the existing array.

array_shift

shifts an element off the beginning of an array

“array_shift() shifts the first value of the array off and returns it, shortening the
array by one element and moving everything down. All numerical array keys will
be modified to start counting from zero while literal keys won't be touched.”

Syntax:

mixed array_shift (array &$array)

Example:

$first_array = array('first_name' => 'Pete' ,
 'last_name' => 'Smith' ,
 'address' => '123 Main Street' ,
 'city' => 'Atlanta', 'state' => 'GA',
 'zip_code' => 30001);

$second_array = array('Sally' , 'Parisi' ,'101 South Street' , 'Atlanta' , 'GA' , 30001);

array_shift($first_array);

array_shift($second_array);

print_r($first_array);

print_r($second_array);

Chapter 5 ■ PHP Functions—Changing, Splitting, Slicing, and Sorting Arrays

82

Output:

Array (
 [last_name] => Smith
 [address] => 123 Main Street
 [city] => Atlanta [state] => GA
 [zip_code] => 30001
)

Array (
 [0] => Parisi
 [1] => 101 South Street
 [2] => Atlanta
 [3] => GA
 [4] => 30001
)

In $first_array, first_name has been removed from the front of the array. In $second_array, Sally has
been removed and the indexes have been renumbered beginning at 0.

array_unshift

prepends one or more elements to the beginning of an array

“array_unshift() prepends passed elements to the front of the array. Note that the
list of elements is prepended as a whole, so that the prepended elements stay in the
same order. All numerical array keys will be modified to start counting from zero
while literal keys won't be touched. “

Syntax:

int array_unshift (array &$array , mixed $value1 [, mixed $...])

Example:

$first_array = array('Pete' ,'Smith','123 Main Street' ,'Atlanta', 'CA', 30001);
print(array_unshift($first_array, "770-777-7777", "adm@no.co"));
print_r($first_array)

Output:

8

Array (
 [0] => 770-777-7777
 [1] => adm@no.co
 [2] => Pete
 [3] => Smith
 [4] => 123 Main Street
 [5] => Atlanta
 [6] => CA
 [7] => 30001
)

Chapter 5 ■ PHP Functions—Changing, Splitting, Slicing, and Sorting Arrays

83

array_unshift will append items to the end of the array. The function will return the new size of the
array. In this example, two items are added to the end of $first_array.

compact

creates an array containing variables and their values

“For each of these, compact() looks for a variable with that name in the current
symbol table and adds it to the output array such that the variable name becomes
the key and the contents of the variable become the value for that key. In short, it
does the opposite of extract().

Any strings that are not set will simply be skipped.”

Syntax:

array compact (mixed $varname1 [, mixed $...])

Example:

$first_name = "Pete";
$last_name = "Smith";
$address = "123 Main Street";
$city = "Atlanta";
$state = "GA";
$zip_code = 30001;

$keys = array("first_name", "last_name",
"address", "city", "state", "zip_code");

$first_array = compact($keys);

print_r($first_array);

Output:

Array (
 [first_name] => Pete
 [last_name] => Smith
 [address] => 123 Main Street
 [city] => Atlanta
 [state] => GA
 [zip_code] => 30001
)

compact will build an array from existing variable names that are passed. It will use the variable names
for the keys creating an associative array. In this example an array of the variable names is passed, which
pulls the values in the variables and creates the array shown. If the variable does not exist, it will ignore it.

range

creates an array containing a range of elements

Syntax:

array range (mixed $start , mixed $end [, number $step = 1])

Chapter 5 ■ PHP Functions—Changing, Splitting, Slicing, and Sorting Arrays

84

Example:

print_r(range(1,10));

Output:

Array (
 [0] => 1
 [1] => 2
 [2] => 3
 [3] => 4
 [4] => 5
 [5] => 6
 [6] => 7
 [7] => 8
 [8] => 9
 [9] => 10
)

range provides a quick way to generate sequential values for an array.

Example:

print_r(range('A','F'));

Output:

Array (
 [0] => A
 [1] => B
 [2] => C
 [3] => D
 [4] => E
 [5] => F
)

You are not limited to just numerical values.

Example:

print_r(range('F','A'));

Output:

Array (
 [0] => F
 [1] => E
 [2] => D
 [3] => C
 [4] => B
 [5] => A
)

You are also not limited to ascending order.

Chapter 5 ■ PHP Functions—Changing, Splitting, Slicing, and Sorting Arrays

85

5.2 � Splitting and Slicing Arrays
array_chunk

splits an array into chunks

“Chunks an array into arrays with size elements. The last chunk may contain less
than size elements.”

Syntax:

array array_chunk (array $array , int $size [, bool $preserve_keys = false])

Example:

$test_array = array('Jeff', 'Smith', '123 Main Street', 'Atlanta', 'GA', '30001');
print_r(array_chunk($test_array, 2));

Output:

Array
(
 [0] => Array
 (
 [0] => Jeff
 [1] => Smith
)

 [1] => Array
 (
 [0] => 123 Main Street
 [1] => GA
)

 [2] => Array
 (
 [0] => 30001
)

)

Passing 2 into the function splits the original array into a two-dimensional array with three elements.

Example:

$test_array = array('Jeff', 'Smith','123 Main Street', 'Atlanta', 'GA', '30001');
print_r(array_chunk($test_array, 2));

Chapter 5 ■ PHP Functions—Changing, Splitting, Slicing, and Sorting Arrays

86

Output:

Array
(
 [0] => Array
 (
 [0] => Jeff
 [1] => Smith
)

 [1] => Array
 (
 [2] => 123 Main Street
 [3] => GA
)

 [2] => Array
 (
 [4] => 30001
)

)

In this example, the original keys (subscripts) are retained within the new two-dimensional array.

array_slice

extracts a slice of the array

“array_slice() returns the sequence of elements from the array as specified by the
offset and length parameters.”

Syntax:

array array_slice (array $array , int $offset [, int $length = NULL [, bool $preserve_keys
= false]])

Example:

$second_array = array('Sally' , 'Parisi' ,
 '101 South Street' , 'Atlanta' , 'GA' , 30001);

print_r(array_slice($second_array, 2));
print_r(array_slice($second_array, -2, 1));
print_r(array_slice($second_array, 0, 2));
print_r(array_slice($second_array, 2, -1));
print_r(array_slice($second_array, 2, -1, true));

Chapter 5 ■ PHP Functions—Changing, Splitting, Slicing, and Sorting Arrays

87

Output:

Array (
 [0] => 101 South Street
 [1] => Atlanta
 [2] => GA
 [3] => 30001
)
Array (
 [0] => GA
)
Array (
 [0] => Sally
 [1] => Parisi
)
Array (
 [0] => 101 South Street
 [1] => Atlanta
 [2] => GA
)
Array (
 [2] => 101 South Street
 [3] => Atlanta
 [4] => GA
)

Passing just a 2 will return all values starting at position 2 (101 South Street, Atlanta, 30001).
Passing a –2 and 1 will slice from the right instead of left, starting at the second to last right position and

return one value (GA).
Passing a 0 and 2 will start at position 0 and return two values (Sally, Parisi).
Passing a 2 and –1 will start at position 2 and return all items up to the second-to-last right-most item

(101 South Street, Atlanta).
Passing 2, –1, and TRUE will return the same as the previous example, except the original indexes

are retained.

array_splice

removes a portion of the array and replace it with something else

“Removes the elements designated by offset and length from the input array, and
replaces them with the elements of the replacement array, if supplied.”

Syntax:

array array_splice (array &$input , int $offset [, int $length = 0 [, mixed $replacement =
array()]])

Example:

$second_array = array('Sally' , 'Parisi' ,
'101 South Street' , 'Atlanta' , 'GA' , 30001);

print_r(array_splice($second_array, 2));
print_r(array_splice($second_array, 0, 1));

Chapter 5 ■ PHP Functions—Changing, Splitting, Slicing, and Sorting Arrays

88

Output:

Array (
 [0] => 101 South Street
 [1] => Atlanta
 [2] => GA
 [3] => 30001
)
Array (
 [0] => Sally
)

In the first example, 2 is passed, which requests that the contents of the array $second_array are
retained starting at index 2 (the address).

In the second example, 0 and 1 are passed, indicating that starting at position 0, one item should be
retained (the first name).

5.3 � Sorting Arrays
array_multisort

sorts multiple or multidimensional arrays

“array_multisort() can be used to sort several arrays at once, or a
multidimensional array by one or more dimensions.

Associative (string) keys will be maintained, but numeric keys will be reindexed.

Sorting type flags:

° SORT_REGULAR - compare items normally (don't change types)

° SORT_NUMERIC - compare items numerically

° SORT_STRING - compare items as strings

° SORT_LOCALE_STRING - compare items as strings, based on the current locale.
It uses the locale, which can be changed using setlocale()

° SORT_NATURAL - compare items as strings using "natural ordering" like
natsort()

° SORT_FLAG_CASE - can be combined (bitwise OR) with SORT_STRING or
SORT_NATURAL to sort strings case-insensitively”

Syntax:

bool array_multisort (array &$array1 [, mixed $array1_sort_order = SORT_ASC [, mixed
$array1_sort_flags = SORT_REGULAR [, mixed $...]]])

Chapter 5 ■ PHP Functions—Changing, Splitting, Slicing, and Sorting Arrays

89

Example:

$first_array = array('Pete' , 'Smith' ,'123 Main Street' , 'Atlanta', 'GA', '30001');
$second_array = array('Sally' , 'Parisi' , '101 South Street' , 'Atlanta' ,'GA' , '30001');

array_multisort($first_array, SORT_ASC,
 $second_array, SORT_DESC);

print_r($first_array);
print_r($second_array);

Output:

Array (
 [0] => 123 Main Street
 [1] => 30001
 [2] => Atlanta
 [3] => GA
 [4] => Pete
 [5] => Smith
)
Array (
 [0] => 101 South Street
 [1] => 30001
 [2] => Atlanta
 [3] => GA
 [4] => Sally
 [5] => Parisi
)

In this example,

$first_array values are sorted as strings in ascending order. String numbers (123,
30001) are first in sorting order followed by ‘A’, ‘G’, ‘P’, and ‘S’.

$second_array values are sorted as strings in descending order. String numbers
(123, 30001) are first in sorting order followed by ‘A’, ‘G’, ‘S’, and ‘P’.

array_reverse

returns an array with elements in reverse order

“Takes an input array and returns a new array with the order of the elements
reversed.”

Syntax:

array array_reverse (array $array [, bool $preserve_keys = false])

Example:

$first_array = array('first_name' => 'Pete' ,
 �'last_name' => 'Smith' , 'address' => '123 Main Street' ,

'city' => 'Atlanta', 'state' =>'GA', 'zip_code' => 30001);

Chapter 5 ■ PHP Functions—Changing, Splitting, Slicing, and Sorting Arrays

90

first_array = array('first_name' => 'Pete' ,
 'last_name' => 'Smith' , 'address' => '123 Main Street' ,

 'city' => 'Atlanta', 'state' =>'GA', 'zip_code' => 30001);

print_r(array_reverse($first_array));
print_r(array_reverse($second_array));
print_r(array_reverse($second_array, TRUE));

Output:

Array (
 [zip_code] => 30001
 [state] => GA
 [city] => Atlanta
 [address] => 123 Main Street
 [last_name] => Smith
 [first_name] => Pete
)

Array (
 [0] => 30001
 [1] => GA
 [2] => Atlanta
 [3] => 101 South Street
 [4] => Parisi
 [5] => Sally
)

Array (
 [5] => 30001
 [4] => GA
 [3] => Atlanta
 [2] => 101 South Street
 [1] => Parisi
 [0] => Sally
)

In this example, the elements in $first_array are returned in reverse order. $second_array is also returned
in reverse order. When passing TRUE in the second parameter, the original numerical indexes are retained.

arsort

sorts an array in reverse order and maintains index association

“This function sorts an array such that array indices maintain their correlation
with the array elements they are associated with.

This is used mainly when sorting associative arrays where the actual element order
is significant.”

Syntax:

bool arsort (array &$array [, int $sort_flags = SORT_REGULAR])

Chapter 5 ■ PHP Functions—Changing, Splitting, Slicing, and Sorting Arrays

91

Example:

$�first_array = array('first_name' => 'Pete' , 'last_name' => 'Smith' ,
'address' => '123 Main Street' , 'city' => 'Atlanta', 'state' => 'CA', 'zip_code' => 30001);

arsort($first_array);

print_r($first_array);

Output:

Array (
 [zip_code] => 30001
 [last_name] => Smith
 [first_name] => Pete
 [state] => CA
 [city] => Atlanta
 [address] => 123 Main Street
)

arsort is used with associative arrays to sort values. It sorts values in reverse alphabetical order. In this
example the ZIP code is listed first because it is numeric. The remaining values are in reverse order. The keys
(subscripts) are maintained.

asort

sorts an array and maintain index association

“This function sorts an array such that array indices maintain their correlation
with the array elements they are associated with. This is used mainly when sorting
associative arrays where the actual element order is significant.”

Syntax:

bool asort (array &$array [, int $sort_flags = SORT_REGULAR])

Example:

$first_array = array('first_name' => 'Pete' ,
 'last_name' => 'Smith' ,
 'address' => '123 Main Street' ,
 'city' => 'Atlanta',
 'state' => 'CA', 'zip_code' => 30001);

asort($first_array);

print_r($first_array);

Output:

Array (
 [address] => 123 Main Street
 [city] => Atlanta
 [state] => CA

Chapter 5 ■ PHP Functions—Changing, Splitting, Slicing, and Sorting Arrays

92

 [first_name] => Pete
 [last_name] => Smith
 [zip_code] => 30001
)

The function asort is used with associative arrays to sort values. It sorts values in alphabetic order. In
this example ZIP code is listed last because it is numeric. The remaining values are in alphabetic order. The
keys (subscripts) are maintained.

krsort

sorts an array by key in reverse order

“Sorts an array by key in reverse order, maintaining key to data correlations. This
is useful mainly for associative arrays.”

Syntax:

bool krsort (array &$array [, int $sort_flags = SORT_REGULAR])

Example:

$�first_array = array('first_name' => 'Pete' , 'last_name' => 'Smith' ,
'address' => '123 Main Street' , 'city' => 'Atlanta', 'state' => 'CA',
'zip_code' => 30001);

krsort($first_array);
print_r($first_array);

Output:

Array (
 [zip_code] => 30001
 [state] => CA
 [last_name] => Smith
 [first_name] => Pete
 [city] => Atlanta
 [address] => 123 Main Street
)

krsort sorts keys in reverse alphabetic order. In this example, zip_code is now first in the array, and
address is last.

ksort

sorts an array by key

“Sorts an array by key, maintaining key to data correlations. This is useful mainly
for associative arrays.”

Syntax:

bool ksort (array &$array [, int $sort_flags = SORT_REGULAR])

Chapter 5 ■ PHP Functions—Changing, Splitting, Slicing, and Sorting Arrays

93

Example:

$first_array = array('first_name' => 'Pete' ,
 'last_name' => 'Smith' ,
 'address' => '123 Main Street',
 'city' => 'Atlanta', 'state' => 'CA',
 'zip_code' => 30001);

ksort($first_array);
print_r($first_array);

Output:

Array (
 [address] => 123 Main Street
 [city] => Atlanta
 [first_name] => Pete
 [last_name] => Smith
 [state] => CA
 [zip_code] => 30001
)

ksort sorts array kesy in alphabetic order. In this example, address is now first in the array, and zip_code is last.

natcasesort

sorts an array using a case-insensitive "natural order" algorithm

“This function implements a sort algorithm that orders alphanumeric strings in
the way a human being would while maintaining key/value associations. This is
described as a "natural ordering".”

Syntax:

bool natcasesort (array &$array)

Example:

$name_array =
array("Pete", "peter", "jones", "Jones");

natcasesort($name_array);

print_r($name_array);

Output:

Array (
 [3] => Jones
 [2] => jones
 [0] => Pete
 [1] => peter
)

Chapter 5 ■ PHP Functions—Changing, Splitting, Slicing, and Sorting Arrays

94

natcasesort arranges items in a way that is more natural to humans. In this example all the Jones values
appear before any of the Peter values. It ignores case.

natsort

sorts an array using a "natural order" algorithm

“This function implements a sort algorithm that orders alphanumeric strings in
the way a human being would while maintaining key/value associations. This is
described as a "natural ordering".”

Syntax:

bool natsort (array &$array)

Example:

$name_array = array("Pete", "peter",
"jones", "Jones");

natsort($name_array);

print_r($name_array);

Output:

Array (
 [3] => Jones
 [0] => Pete
 [2] => jones
 [1] => peter
)

natsort sorts in a human natural way. However, it does not ignore case. In the preceding example, all
uppercase words occur before lowercase. However, notice that the keys (subscripts) are retained, unlike sort.

rsort

sorts an array in reverse order

“This function sorts an array in reverse order (highest to lowest).”

Syntax:

bool rsort (array &$array [, int $sort_flags = SORT_REGULAR])

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
 'city' => 'Atlanta', 'state' => 'CA', 'zip_code' => 30001);

rsort($first_array);

print_r($first_array);

Chapter 5 ■ PHP Functions—Changing, Splitting, Slicing, and Sorting Arrays

95

Output:

Array (
 [0] => 30001
 [1] => Smith
 [2] => Pete
 [3] => CA
 [4] => Atlanta
 [5] => 123 Main Street
)

rsort sorts the values in an array in reverse alphabetic order. It does not maintain the keys (subscripts) from
the original array. As seen from the example, numerical values would exist first in the sorted array.

shuffle

shuffles an array

“This function shuffles (randomizes the order of the elements in) an array.”

Syntax:

bool shuffle (array &$array)

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
 'city' => 'Atlanta', 'state' => 'CA', 'zip_code' => 30001);

shuffle($first_array);

print_r($first_array);

Output:

Array (
 [0] => CA
 [1] => Pete
 [2] => 123 Main Street
 [3] => 30001
 [4] => Smith
 [5] => Atlanta
)

shuffle randomly sorts the order of the values in an array. It does not maintain the keys (subscripts).

sort

sorts an array

“This function sorts an array. Elements will be arranged from lowest to highest
when this function has completed.”

Chapter 5 ■ PHP Functions—Changing, Splitting, Slicing, and Sorting Arrays

96

Syntax:

bool sort (array &$array [, int $sort_flags = SORT_REGULAR])

Example:

$�first_array = array('first_name' => 'Pete' ,
 �'last_name' => 'Smith' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'CA', 'zip_code' => 30001);

sort($first_array);

print_r($first_array);

Output:

Array (
 [0] => 123 Main Street
 [1] => Atlanta
 [2] => CA
 [3] => Pete
 [4] => Smith
 [5] => 30001
)

sort shuffles the array into alphabetic order; it does not maintain the keys (subscripts). String values
naturally occur first in the sort order before numerical values as shown in the example.

uasort

sorts an array with a user-defined comparison function and maintain index association

“This function sorts an array such that array indices maintain their correlation
with the array elements they are associated with, using a user-defined comparison
function.

This is used mainly when sorting associative arrays where the actual element order
is significant.”

Syntax:

bool uasort (array &$array , callable $value_compare_func)

Example:

function value_compare($first_value, $second_value)
{
 if ($first_value == $second_value)
 return 0;
 else if ($first_value > $second_value)
 return 1;
 else
 return -1;
}

Chapter 5 ■ PHP Functions—Changing, Splitting, Slicing, and Sorting Arrays

97

$first_array = array('first_name' => 'Pete' ,
 'last_name' => 'Smith' , 'address' => '123 Main Street' ,
 'city' => 'Atlanta', 'state' => 'CA', 'zip_code' => 30001);

uasort($first_array, 'value_compare');

print_r($first_array);

Output:

Array (
 [address] => 123 Main Street
 [city] => Atlanta
 [state] => CA
 [first_name] => Pete
 [last_name] => Smith
 [zip_code] => 30001
)

uasort sorts the array in ascending order of the values in each element as determined by a user-supplied
function which evaluates what is equal, greater than, or less than. The keys (subscripts) are maintained from
the original array.

The user can modify the comparison shown (such as using === instead of ==) to determine what is
“equal..” The user-supplied function must return a value < 0, 0, and > 0, as shown in the example function.

uasort($first_array, "strcmp”);
print_r($first_array);

A PHP compare function can be used instead of a user-defined function. These could include
strcmp, strcasecmp, strncasecmp, substrcomp, or other PHP comparison functions that return < 0, 0,
or > 0 as a result.

uksort

sorts an array by keys using a user-defined comparison function

“uksort() will sort the keys of an array using a user-supplied comparison function.
If the array you wish to sort needs to be sorted by some nontrivial criteria, you
should use this function.”

Syntax:

bool uksort (array &$array , callable $key_compare_func)

Example:

function key_compare($first_key, $second_key)
{
 if ($first_key == $second_key)
 return 0;
 else if ($first_key > $second_key)
 return 1;

Chapter 5 ■ PHP Functions—Changing, Splitting, Slicing, and Sorting Arrays

98

 else
 return -1;
}

uksort($first_array, "key_compare");
print_r($first_array);

Output:

Array (
 [address] => 123 Main Street
 [city] => Atlanta
 [first_name] => Pete
 [last_name] => Smith
 [state] => CA
 [zip_code] => 30001
)

uksort sorts an array in ascending order by keys (subscripts) based on the comparison provided by a
user-supplied function. The function must determine what is equal, what is greater than, and what is less
than. The keys (subscripts) from the original array are maintained.

The user can modify the comparison shown (such as using === instead of ==) to determine what is
“equal.” The user-supplied function must return a value < 0, 0, and > 0, as shown in the example function.

uksort($first_array, "strcmp”);
print_r($first_array);

A PHP compare function can be used instead of a user-defined function. These could include strcmp,
strcasecmp, strncasecmp, substrcomp, or other PHP comparison functions that return < 0, 0, or > 0 as a result.

usort

sorts an array by values using a user-defined comparison function

“This function will sort an array by its values using a user-supplied comparison
function. If the array you wish to sort needs to be sorted by some nontrivial
criteria, you should use this function.”

Syntax:

bool usort (array &$array , callable $value_compare_func)

Example:

function value_compare($first_value,
 $second_value)
{
 if ($first_value == $second_value)
 return 0;
 else if ($first_value > $second_value)
 return 1;
 else
 return -1;
}

Chapter 5 ■ PHP Functions—Changing, Splitting, Slicing, and Sorting Arrays

99

$first_array = array('first_name' => 'Pete' ,
 'last_name' => 'Smith' , 'address' => '123 Main Street' ,
 'city' => 'Atlanta', 'state' => 'CA', 'zip_code' => 30001);

usort($first_array, 'value_compare');

print_r($first_array);

Output:

Array (
 [0] => 123 Main Street
 [1] => Atlanta
 [2] => CA
 [3] => Pete
 [4] => Smith
 [5] => 30001
)

usort sorts the array in ascending order of the values in each element as determined by a user-supplied
function which evaluates what is equal, greater than, or less than. The keys (subscripts) are not maintained
from the original array.

The user can modify the comparison shown (such as using === instead of ==) to determine what is
“equal.” The user-supplied function must return a value < 0, 0, and > 0, as shown in the example function.

usort($first_array, "strcmp”);
print_r($first_array);

A PHP compare function can be used instead of a user-defined function. These could include strcmp,
strcasecmp, strncasecmp, substrcomp, or other PHP comparison functions that return < 0, 0, or > 0 as a result.

EXERCISES

1.	 Create a PHP program containing an array of all the first and last names of the
students in your class. Sort the array by last name in alphabetic order. Also sort the
array in reverse order.

2.	 Split the array from #1 into two arrays: one containing first names, the other
containing last names.

101© Steve Prettyman 2017
S. Prettyman, PHP Arrays, DOI 10.1007/978-1-4842-2556-1_6

CHAPTER 6

PHP Functions—Comparing
and Merging Arrays

After completing this chapter, the student will be able to…

Create a simple PHP program which compares two arrays on a value, key, or with
a user-defined function.

Create a simple PHP program which merges two arrays via union or intersection

In this chapter we will take a brief look at the PHP functions that compare and merge arrays. Many of
these functions work with multiple array types (single, multidimensional, and/or associative).

All descriptions of the following functions are provided by the online PHP manual available at
www.php.net. Brief examples using each function and a description of the results of these examples are
provided. These examples are only meant to get your feet wet. For a more detailed description of the
functions shown, and for more examples, visit the online PHP manual.

6.1 � Comparing Arrays
array_diff_assoc

computes the difference of two associative arrays with additional index check

“Compares array1 against array2 and returns the difference.”

Syntax:

array array_diff_assoc (array $array1 , array $array2 [, array $...])

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'GA', 'zip_code' => 30001);

$second_array = array('first_name' => 'Sally' ,
'last_name' => 'Parisi' , 'address' => '101 South Street' ,
'city' => 'Atlanta' , 'state' => 'GA' , 'zip_code' => 30001);

http://www.php.net/

Chapter 6 ■ PHP Functions—Comparing and Merging Arrays

102

$difference = array_diff_assoc($first_array, $second_array);
print_r($difference);

Output:

Array
(
 [first_name] => Pete
 [last_name] => Smith
 [address] => 123 Main Street
)

This example compares $first_array and $second_array. It returns was is different about the first array.
If we switch the parameters

Example:

$difference = array_diff_assoc($second_array, $first_array);

Output:

Array
(
 [first_name] => Sally
 [last_name] => Parisi
 [address] => 101 South Street
)

This example compares $first_array and $second_array. It returns was is different about the second array.

array_diff_key

computes the difference of arrays using keys for comparison

“Compares the keys from array1 against the keys from array2 and returns the
difference.”

Syntax:

array array_diff_key (array $array1 , array $array2 [, array $...])

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'GA', 'zip' => 30001);

$second_array = array('firstname' => 'Sally' ,
'lastname' => 'Parisi' , 'address' => '101 South Street' ,
'city' => 'Atlanta' , 'state' => 'GA' , 'zipcode' => 30001);

var_dump(array_diff_key($first_array, $second_array));

Chapter 6 ■ PHP Functions—Comparing and Merging Arrays

103

Output:

array(3)
 {
 ["first_name"]=> string(4) "Pete"
 ["last_name"]=> string(5) "Smith"
 ["zip"]=> int(30001)
 }

This example compares the keys in $first_array and $second_array. If the keys are different, it returns an
array with the keys that are different in the first array.

If we switch parameters

Example:

var_dump(array_diff_key($second_array, $first_array));

Output:

array(3)
{
 ["firstname"]=> string(5) "Sally"
 ["lastname"]=> string(6) "Parisi"
 ["zipcode"]=> int(30001)
}

This example compares the keys in $first_array and $second_array. If the keys are different, it returns an
array with the keys that are different in the second array.

array_diff_uassoc

computes the difference of arrays with additional index check which is performed by a user-supplied
callback function

“Compares array1 against array2 and returns the difference.”

Syntax:

array array_diff_uassoc (array $array1 , array $array2 [, array $...], callable $key_
compare_func)

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'GA', 'zip_code' => 30001);

$second_array = array('first_name' => 'Sally' ,
'last_name' => 'Parisi' , 'address' => '101 South Street' ,
'city' => 'Atlanta' , 'state' => 'GA' , 'zip_code' => 30001);

function key_compare($first_value, $second_value)
{
 if ($first_value === $second_value) {
 return 0;

Chapter 6 ■ PHP Functions—Comparing and Merging Arrays

104

// if they are the same do return a value
 }
 return ($first_value > $second_value)? 1:-1;
 // if the first value is greater, return that value.
}

print_r(array_diff_uassoc($first_array,
 $second_array, "key_compare"));

Output:

Array (
 [first_name] => Pete
 [last_name] => Smith
 [address] => 123 Main Street
)

In this example, the function key_compare causes the values in the first array ($first_array) to be returned.

Example:

print_r(array_diff_uassoc($second_array, $first_array, "key_compare"));

Output:

Array (
 [first_name] => Sally
 [last_name] => Parisi
 [address] => 101 South Street
)

In this example, the function key_compare causes the values in the first array ($second_array) to be
returned.

array_diff_ukey

computes the difference of arrays using a callback function on the keys for comparison

“Compares the keys from array1 against the keys from array2 and returns the
difference.”

Syntax:

array array_diff_ukey (array $array1 , array $array2 [, array $...], callable $key_
compare_func)

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'GA', 'zip_code' => 30001);

$second_array = array('firstname' => 'Sally' ,
'lastname' => 'Parisi' , 'address' => '101 South Street' ,
'city' => 'Atlanta' , 'state' => 'GA' , 'zipcode' => 30001);

Chapter 6 ■ PHP Functions—Comparing and Merging Arrays

105

function key_compare($first_value, $second_value)
{
 if ($first_value == $second_value) {
 return 0;
 }
 return ($first_value > $second_value)? 1:-1;
}

var_dump(array_diff_ukey($first_array,
 $second_array, key_compare));

Output:

array(3) {
 ["first_name"]=> string(4) "Pete"
 ["last_name"]=> string(5) "Smith"
 ["zip_code"]=> int(30001)
}

In this example, the function key_compare compares the keys and returns the key and value from the
first array ($first_array), when there is a difference.

Example:

var_dump(array_diff_ukey($second_array, $first_array, 'key_compare'));

Output:

array(3) {
 ["firstname"]=> string(5) "Sally"
 ["lastname"]=> string(6) "Parisi"
 ["zipcode"]=> int(30001)
}

In this example, the function key_compare compares the keys and returns the key and value from the
first array ($second_array), when there is a difference.

A PHP compare function can be used instead of a user-defined function. These could include strcmp,
strcasecmp, strncasecmp, substrcomp, or other PHP comparison functions that return < 0, 0, or > 0 as a result.

array_diff

computes the difference of arrays

“Compares array1 against one or more other arrays and returns the values in
array1 that are not present in any of the other arrays.”

Syntax:

array array_diff (array $array1 , array $array2 [, array $...])

Example:

$first_array = array("a", “b”, “c”, “d”, “e”);
$second_array = array("a”, “d”, “f”, “g”, “h”);
$difference = array_diff($first_array, $second_array);

print_r($difference);

Chapter 6 ■ PHP Functions—Comparing and Merging Arrays

106

Output:

Array (
 [1] => b
 [2] => c
 [4] => e
)

In this example, the arrays are compared. If a difference is found, the key and value from the first array
($first_array) is returned.

array_udiff_assoc

computes the difference of arrays with additional index check, compares data by a callback function

“array_udiff_assoc() returns an array containing all the values from array1 that
are not present in any of the other arguments. Note that the keys are used in the
comparison unlike array_diff() and array_udiff(). The comparison of arrays' data
is performed by using a user-supplied callback.”

Syntax:

array array_udiff_assoc (array $array1 , array $array2 [, array $...], callable $value_
compare_func)

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
 'city' => 'Atlanta', 'state' => 'CA', 'zip_code' => 30001);

$second_array = array('firstname' => 'Pete' ,
'last_name' => 'Jones' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'GA', 'zipcode' => 30001);

function key_compare($first_key, $second_key)
{
 if ($first_key == $second_key)
 return 0;
 else if ($first_key > $second_key)
 return 1;
 else
 return -1;
}

print_r(array_udiff_assoc($first_array,
 $second_array, "key_compare"));

Output:

Array (
 [first_name] => Pete
 [last_name] => Smith
 [state] => CA

Chapter 6 ■ PHP Functions—Comparing and Merging Arrays

107

 [zip_code] => 30001
)

In this example, $first_array includes a different index (key) for first name than $second_array. It also
includes a different value in last_name and state. The ZIP code index (key) is also different.

The user-supplied method causes the indexes (keys) and values from $first_array to be returned when
there is a difference in either or both the index (key) and value.

A PHP compare function can be used instead of a user-defined function. These could include strcmp,
strcasecmp, strncasecmp, substrcomp, or other PHP comparison functions that return < 0, 0, or > 0 as a result.

array_udiff_uassoc

computes the difference of arrays with additional index check, compares data and indexes by a callback function

“Returns an array containing all the values from array1 that are not present in any
of the other arguments.”

Syntax:

array array_udiff_uassoc (array $array1 , array $array2 [, array $...], callable $value_
compare_func , callable $key_compare_func)

Example:

$first_array = array('first_name' => 'Pete' ,
 'last_name' => 'Smith' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'CA', 'zip_code' => 30001);

$second_array = array('firstname' => 'Pete' ,
 'last_name' => 'Jones' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'GA', 'zipcode' => 30001);

function key_compare($first_key, $second_key)
{
 if ($first_key == $second_key)
 return 0;
 else if ($first_key > $second_key)
 return 1;
 else
 return -1;
}

function value_compare($first_value,
 $second_value)
{
 if ($first_value == $second_value)
 return 0;
 else if ($first_value > $second_value)
 return 1;
 else
 return -1;
}

Chapter 6 ■ PHP Functions—Comparing and Merging Arrays

108

print_r(array_udiff_uassoc($first_array,
 $second_array, "value_compare", "key_compare"));

Output:

Array (
 [first_name] => Pete
 [last_name] => Smith
 [state] => CA
 [zip_code] => 30001
)

The user must supply a function for comparing both the indexes and the values. In this example, both
methods use the same logic to make a comparison. If the keys are different, the first_array key and value
are displayed. If the values are different, the first_array key and value are also displayed. Thus, first_name is
displayed because the indexes are different. last_name is displayed because the values are different. state is
displayed because the values are different. zip_code is displayed because the indexes are different.

A PHP compare function can be used instead of a user-defined function. These could include strcmp,
strcasecmp, strncasecmp, substrcomp, or other PHP comparison functions that return < 0, 0, or > 0 as a result.

array_udiff

computes the difference of arrays by using a callback function for data comparison

“Returns an array containing all the values of array1 that are not present in any of the
other arguments.”

Syntax:

array array_udiff (array $array1 , array $array2 [, array $...], callable $value_compare_func)

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'CA', 'zip_code' => 30001);

$second_array = array('firstname' => 'Pete' ,
'last_name' => 'Jones' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'GA', 'zipcode' => 30001);

function value_compare($first_value, $second_value)
{
 if ($first_value == $second_value)
 return 0;
 else if ($first_value > $second_value)
 return 1;
 else
 return -1;
}

print_r(array_udiff ($first_array,
$second_array, "value_compare"));

Chapter 6 ■ PHP Functions—Comparing and Merging Arrays

109

Output:

Array (
 [last_name] => Smith
 [state] => CA
)

User has to supply a function that will compare the values. In this example, if the values are different,
the key and value from $first_array are displayed. Index differences are ignored. The values in last_name and
state are different in the two arrays.

A PHP compare function can be used instead of a user-defined function. These could include strcmp,
strcasecmp, strncasecmp, substrcomp, or other PHP comparison functions that return < 0, 0, or > 0 as a result.

array_uintersect_assoc

computes the intersection of arrays with additional index check, compares data by a callback function

“Returns an array containing all the values of array1 that are present in all the arguments.”

Syntax:

array array_uintersect_assoc (array $array1 , array $array2 [, array $...], callable
$value_compare_func)

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
 'city' => 'Atlanta', 'state' => 'CA', 'zip_code' => 30001);

$second_array = array('firstname' => 'Pete' ,
'last_name' => 'Jones' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'GA', 'zipcode' => 30001);

print_r(array_uintersect_assoc($first_array,
$second_array, "strcasecmp"));

Output:

Array (
 [address] => 123 Main Street
 [city] => Atlanta
)

This example is using the PHP method strcasecmp to compare strings ignoring the case. If the strings
(and the keys) match, the key and index are returned. Only address and city are matched in both arrays. The
programmer can supply a function as shown in other examples. The supplied function must return results
<0, 0, and > 0.

Other possible PHP functions that can be used include strcmp, strncasecmp, substrcomp, or any other
PHP comparison functions that return < 0, 0, or > 0 as a result.

Chapter 6 ■ PHP Functions—Comparing and Merging Arrays

110

array_uintersect_uassoc

computes the intersection of arrays with additional index check, compares data and indexes by separate
callback functions

“Returns an array containing all the values of array1 that are present in all the
arguments.”

Syntax:

array array_uintersect_uassoc (array $array1 , array $array2 [, array $...], callable
$value_compare_func , callable $key_compare_func)

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'CA', 'zip_code' => 30001);

$second_array = array('firstname' => 'Pete' ,
'last_name' => 'Jones' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'GA', 'zipcode' => 30001);

function key_compare($first_key, $second_key)
{
 if ($first_key == $second_key)
 return 0;
 else if ($first_key > $second_key)
 return 1;
 else
 return -1;
}

function value_compare($first_value, $second_value)
{
 if ($first_value == $second_value)
 return 0;
 else if ($first_value > $second_value)
 return 1;
 else
 return -1;
}

print_r(array_uintersect_uassoc($first_array,
$second_array, "key_compare", "value_compare"));

Output:

Array (
 [address] => 123 Main Street
 [city] => Atlanta
)

Chapter 6 ■ PHP Functions—Comparing and Merging Arrays

111

This function requires both key and value user-supplied functions. PHP functions could be used (such
as strcascmp). The user-supplied functions return the key and value if both the key and value are exact
matches (except for the case due to == instead of ===). In this example the address and city are the only
matches (for both key and value).

A PHP compare function can be used instead of a user-defined function. These could include strcmp,
strcasecmp, strncasecmp, substrcomp, or other PHP comparison functions that return < 0, 0, or > 0 as a result.

array_uintersect

computes the intersection of arrays, compares data by a callback function

“Returns an array containing all the values of array1 that are present in all the
arguments. “

Syntax:

array array_uintersect (array $array1 , array $array2 [, array $...], callable $value_
compare_func)

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'CA', 'zip_code' => 30001);

$second_array = array('firstname' => 'Pete' ,
'last_name' => 'Jones' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'GA', 'zipcode' => 30001);

function value_compare($first_value, $second_value)
{
 if ($first_value == $second_value)
 return 0;
 else if ($first_value > $second_value)
 return 1;
 else
 return -1;
}

print_r(array_uintersect($first_array,
$second_array, "value_compare"));

Output:

Array (
 [first_name] => Pete
 [address] => 123 Main Street
 [city] => Atlanta
 [zip_code] => 30001
)

This function will ignore differences in the key (subscript). It uses the user-supplied function to
compare values. If the values match, the key and value from the first array ($first_array) are returned.

Chapter 6 ■ PHP Functions—Comparing and Merging Arrays

112

In this example, first name, address, city, and ZIP code are returned because they exist in both arrays,
even though the keys (subscripts) vary in each array.

The user can modify the comparison shown (such as using === instead of ==) to determine what is
“equal.” The function must return a value < 0, 0, and > 0.

print_r(array_uintersect($first_array, $second_array, "strcmp”));

A PHP compare function can be used instead of a user-defined function. These could include strcmp,
strcasecmp, strncasecmp, substrcomp, or other PHP comparison functions that return < 0, 0, or > 0 as a result.

6.2 � Merging Arrays
array_combine

creates an array by using one array for keys and another for its value

“Creates an array using the values from the keys array as keys and the values from
the values array as the corresponding values.”

Syntax:

array array_combine (array $keys , array $values)

Example:

$first_names = array('Pete', 'Sally', 'Fred');
$last_names = array('Smith', 'Parisi', 'Jones');
$names = array_combine($last_names,
$first_names);
print_r($names);

Output:

Array
(
 [Smith] => Pete
 [Parisi] => Sally
 [Jones] => Fred
)

This example uses the $last_names array to populate the keys and the $first_names array to populate
the values.

array_intersect_assoc

computes the intersection of arrays with additional index check

“array_intersect_assoc() returns an array containing all the values of array1 that
are present in all the arguments. Note that the keys are used in the comparison
unlike in array_intersect().”

This function compares arrays and returns what is common in both arrays. The index and the value
must both be the same.

Chapter 6 ■ PHP Functions—Comparing and Merging Arrays

113

Syntax:

array array_intersect_assoc (array $array1 , array $array2 [, array $...])

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'GA', 'zip_code' => 30001);
$second_array = array('firstname' => 'Sally' ,
'lastname' => 'Parisi' , 'address' => '101 South Street' ,
'city' => 'Atlanta' , 'state' => 'GA' , 'zipcode' => 30001);

$result_array = array_intersect_assoc($first_array, $second_array);

print_r($result_array);

Output:

Array (
 [city] => Atlanta
 [state] => GA
)

Notice that ZIP code was not included because the indexes were not the same. Only city and state are
the same in both arrays.

array_intersect_key

computes the intersection of arrays using keys for comparison

“array_intersect_key() returns an array containing all the entries of array1 which
have keys that are present in all the arguments.”

Syntax:

array array_intersect_key (array $array1 , array $array2 [, array $...])

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'GA', 'zip_code' => 30001);
$second_array = array('firstname' => 'Sally' ,
'lastname' => 'Parisi' , 'address' => '101 South Street' ,
'city' => 'Atlanta' , 'state' => 'GA' , 'zipcode' => 30001);

$result_array = array_intersect_key($first_array,
$second_array);

print_r($result_array);

Chapter 6 ■ PHP Functions—Comparing and Merging Arrays

114

Output:

Array (
 [address] => 123 Main Street
 [city] => Atlanta
 [state] => GA
)

This function compares keys (only) and returns any key/value pair from the first array that has a
matching key in the second array. In this example, even though the values are different in each array,
address, city, and state keys are the same. The values from the first array ($first_array) are also passed.

array_intersect_uassoc

computes the intersection of arrays with additional index check, compares indexes by a callback function

“array_intersect_uassoc() returns an array containing all the values of array1 that
are present in all the arguments. Note that the keys are used in the comparison
unlike in array_intersect().”

Syntax:

array array_intersect_uassoc (array $array1 , array $array2 [, array $...], callable $key_
compare_func)

Example:

$first_array = array('first_name' => 'Pete' ,
 'last_name' => 'Smith' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'GA', 'zip_code' => 30001);
$second_array = array('firstname' => 'Sally' ,
 'lastname' => 'Parisi' , 'address' => '101 South Street' ,
 'city' => 'Atlanta' , 'state' => 'GA' , 'zipcode' => 30001);

$result_array = array_intersect_uassoc($first_array,
$second_array, "strcasecmp");

print_r($result_array);

Output:

Array (
 [city] => Atlanta
 [state] => GA
)

This example returns the common values Atlanta and GA but not the ZIP code since the indexes are
different. strcasecmp is a PHP function that compares strings. If they are an exact match then this example
would return the value as shown (from $first_array). Other PHP functions which return 0, >0, or <0 can be
used (see next example).

Chapter 6 ■ PHP Functions—Comparing and Merging Arrays

115

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
 'city' => 'Atlanta', 'state' => 'GA', 'zip_code' => 30001);
$second_array = array('firstname' => 'Sally' ,
 'lastname' => 'Parisi' , 'address' => '101 South Street' ,
 'city' => 'Atlanta' , 'state' => 'GA' , 'zipcode' => 30001);

function key_compare($first_key, $second_key)
{
 if ($first_key == $second_key)
 return 0;
 else if ($first_key > $second_key)
 return 1;
 else
 return -1;
}

$result_array = array_intersect_uassoc($first_array,
$second_array, "key_compare");

print_r($result_array);

Output:

Array (
 [city] => Atlanta
 [state] => GA
)

The programmer can create their own functions. However, they must return 0 (exact match), < 0 (first
array is less than second array), or >0 (first array is greater than second array).

Other PHP functions that can be used include strcmp, strcasecmp, substrcomp, or other PHP
comparison functions that return < 0, 0, or > 0 as a result.

array_intersect_ukey

computes the intersection of arrays using a callback function on the keys for comparison

“array_intersect_ukey() returns an array containing all the values of array1 which
have matching keys that are present in all the arguments.”

Syntax:

array array_intersect_ukey (array $array1 , array $array2 [, array $...], callable $key_
compare_func)

Chapter 6 ■ PHP Functions—Comparing and Merging Arrays

116

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'GA', 'zip_code' => 30001);
$second_array = array('firstname' => 'Sally' ,
'lastname' => 'Parisi' , 'address' => '101 South Street' ,
 'city' => 'Atlanta' , 'state' => 'GA' , 'zipcode' => 30001);

function key_compare($first_key, $second_key)
{
 if ($first_key == $second_key)
 return 0;
 else if ($first_key > $second_key)
 return 1;
 else
 return -1;
}

$result_array = array_intersect_ukey($first_array,
 $second_array, 'key_compare');

print_r($result_array);

Output:

Array (
 [address] => 123 Main Street
 [city] => Atlanta
 [state] => GA
)

This function ignores the values and only compares keys. Thus, in this example address is returned
because the keys match even though the values are different. You can use PHP functions (such as
strcasecmp) instead of your own functions.

A PHP compare function can be used instead of a user-defined function. These could include strcmp,
strcasecmp, strncasecmp, substrcomp, or other PHP comparison functions that return < 0, 0, or > 0 as a result.

array_intersect

computes the intersection of arrays

“array_intersect() returns an array containing all the values of array1 that are
present in all the arguments. Note that keys are preserved.”

Syntax:

array array_intersect (array $array1 , array $array2 [, array $...])

Example:

$first_array = array('first_name' => 'Pete' ,
 'last_name' => 'Smith' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'GA', 'zip_code' => 30001);

Chapter 6 ■ PHP Functions—Comparing and Merging Arrays

117

$second_array = array('firstname' => 'Sally' ,
 'lastname' => 'Parisi' , 'address' => '101 South Street' ,
 'city' => 'Atlanta' , 'state' => 'GA' , 'zipcode' => 30001);

$result_array = array_intersect($first_array,
$second_array);

print_r($result_array);

Output:

Array (
 [city] => Atlanta
 [state] => GA
 [zip_code] => 30001
)

This function compares values and ignores keys. It returns the key that exists in the first array.

array_merge_recursive

merge two or more arrays recursively

“array_merge_recursive() merges the elements of one or more arrays together so that the
values of one are appended to the end of the previous one. It returns the resulting array.

If the input arrays have the same string keys, then the values for these keys are merged
together into an array, and this is done recursively, so that if one of the values is an array
itself, the function will merge it with a corresponding entry in another array too. If, however,
the arrays have the same numeric key, the later value will not overwrite the original value,
but will be appended.”

Syntax:

array array_merge_recursive (array $array1 [, array $...])

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'GA', 'zip_code' => 30001);

$second_array = array('first_name' => 'Sally' ,
'last_name' => 'Parisi' , 'address' => '101 South Street' ,
'city' => 'Atlanta' , 'state' => 'GA' , 'zip_code' => 30001);

$result = array_merge_recursive($first_array,
 $second_array);
print_r($result);

Output:

Array (
[first_name] => Array
 ([0] => Pete

Chapter 6 ■ PHP Functions—Comparing and Merging Arrays

118

 [1] => Sally
)
 [last_name] => Array
 ([0] => Smith
 [1] => Parisi
)
 [address] => Array
 (
 [0] => 123 Main Street
 [1] => 101 South Street
)
 [city] => Array
 ([0] => Atlanta
 [1] => Atlanta
)
 [state] => Array
 ([0] => GA
 [1] => GA
)
 [zip_code] => Array
 ([0] => 30001
 [1] => 30001
)
)

Duplicate keys are placed into an array as shown above. This produces a multidimensional array with
rows (arrays) of like items, such as first_name.

array_merge

merge one or more arrays

“Merges the elements of one or more arrays together so that the values of one are
appended to the end of the previous one. It returns the resulting array.

If the input arrays have the same string keys, then the later value for that key will
overwrite the previous one. If, however, the arrays contain numeric keys, the later
value will not overwrite the original value, but will be appended.

Values in the input array with numeric keys will be renumbered with incrementing
keys starting from zero in the result array.”

Syntax:

array array_merge (array $array1 [, array $...])

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'GA', 'zip_code' => 30001);

Chapter 6 ■ PHP Functions—Comparing and Merging Arrays

119

$second_array = array('first_name' => 'Sally' ,
'last_name' => 'Parisi' , 'address' => '101 South Street' ,
'city' => 'Atlanta' , 'state' => 'GA' , 'zip_code' => 30001);

$result = array_merge($first_array, $second_array);
print_r($result);

Output:

Array (
 [first_name] => Sally
 [last_name] => Parisi
 [address] => 101 South Street
 [city] => Atlanta
 [state] => GA
 [zip_code] => 30001
)

If the keys are the same in both arrays the second array will dominate as shown above.

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'GA', 'zip_code' => 30001);

$second_array = array('firstname' => 'Sally' ,
'lastname' => 'Parisi' , 'add' => '101 South Street' ,
'city' => 'Atlanta' , 'st' => 'GA' , 'zipcode' => 30001);

$result = array_merge($first_array, $second_array);
print_r($result);

Output:

Array (
 [first_name] => Pete
 [last_name] => Smith
 [address] => 123 Main Street
 [city] => Atlanta
 [state] => GA
 [zip_code] => 30001
 [firstname] => Sally
 [lastname] => Parisi
 [add] => 101 South Street
 [cty] => Atlanta
 [st] => GA
 [zipcode] => 30001
)

If the indexes are different, the second array will be appended to the first array as shown above.

Chapter 6 ■ PHP Functions—Comparing and Merging Arrays

120

Example:

$first_array = array('Pete' , 'Smith' ,
'123 Main Street' , 'Atlanta', 'GA', 30001);
$second_array = array('Sally' , 'Parisi' ,
'101 South Street' , 'Atlanta' ,'GA' , 30001);

$result = array_merge($first_array, $second_array);
print_r($result);

Output:

Array (
 [0] => Pete
 [1] => Smith
 [2] => 123 Main Street
 [3] => Atlanta
 [4] => GA
 [5] => 30001
 [6] => Sally
 [7] => Parisi
 [8] => 101 South Street
 [9] => Atlanta
 [10] => GA
 [11] => 30001
)

If the arrays are numeric, the keys will be renumbered for the new array created by merging $first_array
and $second_array.

array_replace_recursive

replaces elements from passed arrays into the first array recursively

“array_replace_recursive() replaces the values of array1 with the same values
from all the following arrays. If a key from the first array exists in the second
array, its value will be replaced by the value from the second array. If the key
exists in the second array, and not the first, it will be created in the first array. If
a key only exists in the first array, it will be left as is. If several arrays are passed
for replacement, they will be processed in order, the later array overwriting the
previous values.”

Syntax:

array array_replace_recursive (array $array1 , array $array2 [, array $...])

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'GA', 'zip_code' => 30001);

Chapter 6 ■ PHP Functions—Comparing and Merging Arrays

121

$second_array = array('first_name' => 'Sally' ,
'lastname' => 'Parisi' , 'address' => '101 South Street' ,
 'city' => 'Atlanta' , 'state' => 'GA' , 'zipcode' => 30001);

print_r(array_replace_recursive($first_array,
$second_array));

Output:

Array (
 [first_name] => Sally
 [last_name] => Smith
 [address] => 101 South Street
 [city] => Atlanta
 [state] => GA
 [zip_code] => 30001
 [lastname] => Parisi
 [zipcode] => 30001
)

Comparing $first_array with $second_array, the last name and ZIP code indexes are different.
This function will attempt to substitute the values contained in the array in the second parameter
($second_array) into the array in the first parameter ($first_array). If there is not a related value in the second
array (there is no last_name or zip_code), it will retain the values from the first array. If there are values in
the second array that are not in the first array, it will add them to the end of the array (lastname, zipcode)
produced. This process is recursive.

array_replace

replaces elements from passed arrays into the first array

“array_replace() replaces the values of array1 with values having the same keys in
each of the following arrays. If a key from the first array exists in the second array,
its value will be replaced by the value from the second array. If the key exists in the
second array, and not the first, it will be created in the first array. If a key only exists
in the first array, it will be left as is. If several arrays are passed for replacement, they
will be processed in order, the later arrays overwriting the previous values. “

Syntax:

array array_replace (array $array1 , array $array2 [, array $...])

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
 'city' => 'Atlanta', 'state' => 'GA', 'zip_code' => 30001);

$second_array = array('first_name' => 'Sally' ,
'lastname' => 'Parisi' , 'address' => '101 South Street' ,
 'city' => 'Atlanta' , 'state' => 'GA' , 'zipcode' => 30001);

print_r(array_replace($first_array, $second_array));

Chapter 6 ■ PHP Functions—Comparing and Merging Arrays

122

Output:

Array (
 [first_name] => Sally
 [last_name] => Smith
 [address] => 101 South Street
 [city] => Atlanta
 [state] => GA
 [zip_code] => 30001
 [lastname] => Parisi
 [zipcode] => 30001
)

Comparing $first_array with $second_array, the last name and ZIP code indexes are different. This
function will attempt to substitute the values contained in the array in the second parameter ($second_
array) into the array in the first parameter ($first_array). If there is not a related value in the second array
(there is no last_name or zip_code), it will retain the values from the first array. If there are values in the
second array that are not in the first array, it will add them to the end of the array (lastname, zipcode)
produced. This process is not recursive.

EXERCISES

1.	 Create a PHP program which contains an array of cities with a population of greater
than 100,000 residents in Georgia. Include a second array which contains cities
with a population of greater than 100,000 residents in Florida. Using one of the
PHP functions shown in this chapter, compare the arrays and display the common
elements.

2.	 Using the arrays from #1, use one of the functions shown in this chapter to merge
the arrays without any duplications existing in the new array.

123© Steve Prettyman 2017
S. Prettyman, PHP Arrays, DOI 10.1007/978-1-4842-2556-1_7

CHAPTER 7

PHP Functions—Searching,
Traversing, and Displaying Arrays

After completing this chapter, the student will be able to…

Create a simple PHP program to search an array for an existing value and/or key

Create a simple PHP program which will traverse through every element of an
array without using a loop

Create a simple PHP program which will display contents of an array based
on a filter

In this final chapter we will take a brief look at the PHP functions to search, traverse, and display arrays.
Many of these functions work with multiple array types (single, multidimensional, and/or associative).

All descriptions of the following functions are provided by the online PHP manual available at
www.php.net. Brief examples using each function and a description of the results of these examples are
provided. These examples are only meant to get your feet wet. For a more detailed description of the
functions shown, and for more examples, visit the online PHP manual.

7.1 � Searching Arrays
array_count_values

counts all the values of an array

“Returns an array using the values of array as keys and their frequency in array as
values.”

Syntax:

array array_count_values (array $array)

Example:

$silly_array = array("hey", "hey", "hey", "what",
 "is", “this”, “unsure”, “unsure”);
 print_r(array_count_values($silly_array));

http://www.php.net/
http://www.php.net/

Chapter 7 ■ PHP Functions—Searching, Traversing, and Displaying Arrays

124

Output:

Array
(
 [hey] => 3
 [what] => 1
 [is] => 1
 [this] => 1
 [unsure] => 2
)

This example counts the frequency of the values in $silly_array. It creates an array that uses the value as
an index and the frequency as the value.

array_column

returns the values from a single column in the input array.

“array_column() returns the values from a single column of the input, identified by the column_key.
Optionally, an index_key may be provided to index the values in the returned array by the values from the
index_key column of the input array.”

Syntax:

array array_column (array $input , mixed $column_key [, mixed $index_key = null])

Example:

$customer_record = array (
 array('first_name' => 'Pete' ,
 'last_name' => 'Smith' , 'address' => '123 Main Street' ,
 'city' => 'Atlanta', 'state' => 'GA', 'zip_code' => 30001),
 array('first_name' => 'Sally' ,
 'last_name' => 'Parisi' , 'address' => '101 South Street' ,
 'city' => 'Atlanta' , 'state' => 'GA' , 'zip_code' => 30001)
);

$first_names = array_column($customer_record,
'first_name');
print_r($first_names);

Output:

Array
(
 [0] => Pete
 [1] => Sally
)

In this example, all first names in the customer_array are returned.
In PHP 7 you can also specify an index in the second parameter.

Chapter 7 ■ PHP Functions—Searching, Traversing, and Displaying Arrays

125

Example:

$customer_record = array (
 array('first_name' => 'Pete' ,
 'last_name' => 'Smith' ,
 'address' => '123 Main Street' ,
 'city' => 'Atlanta', 'state' => 'GA',
 'zip_code' => 30001),
 array('first_name' => 'Sally' ,
 'last_name' => 'Parisi' ,
 'address' => '101 South Street' ,
 'city' => 'Atlanta' , 'state' => 'GA' ,
 'zip_code' => 30001)
);
$first_names = array_column($customer_record,
 'first_name', ‘last_name’);
print_r($first_names);

Output:

Array
(
 [Smith] => Pete
 [Parisi] => Sally
)

In this example, the values in last_name are used to populate the new keys (subscripts) which are
returned from the function.

array_key_exists

checks if the given key or index exists in the array

“array_key_exists() returns TRUE if the given key is set in the array. Key can be any
value possible for an array index.”

Syntax:

bool array_key_exists (mixed $key , array $array)

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
 'city' => 'Atlanta', 'state' => 'GA', 'zip_code' => 30001);

if (array_key_exists('first_name', $first_array)) {

 print "The 'first_name' is in the array";

}

Chapter 7 ■ PHP Functions—Searching, Traversing, and Displaying Arrays

126

Output:

The ‘first_name’ is in the array
This function eliminates the need to create a loop when searching for a key in an array.

array_keys

returns all the keys or a subset of the keys of an array

“array_keys() returns the keys, numeric and string, from the array.”

Syntax:

array array_keys (array $array [, mixed $search_value = null [, bool $strict = false]])

Example:

$first_array = array('first_name' => 'Pete' ,
 'last_name' => 'Smith' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'GA', 'zip_code' => 30001);

print_r(array_keys($first_array));

Output:

Array (
 [0] => first_name
 [1] => last_name
 [2] => address
 [3] => city
 [4] => state
 [5] => zip_code
)

This example returns all keys that exist in array $first_name.

array_search

searches the array for a given value and returns the corresponding key if successful “Searches haystack for needle.”

Syntax:

mixed array_search (mixed $needle , array $haystack [, bool $strict = false])

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
 'city' => 'Atlanta', 'state' => 'GA', 'zip_code' => 30001);

print array_search('123 Main Street', $first_array);

Output:

address

Chapter 7 ■ PHP Functions—Searching, Traversing, and Displaying Arrays

127

The value passed has to be an exact match. Passing ‘Main’ only in this example would not return a match.

in_array

checks if a value exists in an array

“Returns TRUE if needle is found in the array, FALSE otherwise.”

Syntax:

bool in_array (mixed $needle , array $haystack [, bool $strict = FALSE])

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'CA', 'zip_code' => 30001);

if(in_array("Pete",$first_array))
{

 print "Found Pete!";
}

else
{

 print "WE LOST PETE!";

}

Output:

Found Pete!

in_array returns TRUE if the item searched is in the array. It does not return the position of the item in
the array. In this example, Pete is found in the array.

key_exists

alias of array_key_exists()

“key_exists — Checks if the given key or index exists in the array”

Syntax:

bool key_exists (mixed $key , array $array)

Example:

$first_array = array('first_name' => 'Pete' ,
 'last_name' => 'Smith' , 'address' => '123 Main Street' ,
 'city' => 'Atlanta', 'state' => 'GA', 'zip_code' => 30001);

Chapter 7 ■ PHP Functions—Searching, Traversing, and Displaying Arrays

128

if (key_exists('first_name', $first_array)) {

 print "The 'first_name' is in the array";

}

Output:
The Main ‘first_name’ is in the array
This function eliminates the need to create a loop when searching for a key in an array.

7.2 � Traversing Arrays
current

returns the current element in an array

“The current() function simply returns the value of the array element that's
currently being pointed to by the internal pointer. It does not move the pointer in
any way. If the internal pointer points beyond the end of the elements list or the
array is empty, current() returns FALSE.”

Syntax:

mixed current (array &$array)

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
 'city' => 'Atlanta', 'state' => 'CA', 'zip_code' => 30001);

print current($first_array) . "
";
print next($first_array) . "
";
print prev($first_array) . "
";
print end($first_array) . "
";

Output:

Pete
Smith
Pete
30001

current works with next, previous, and end to display values located in positions in an array. current does
not actually move the pointer (position currently accessed) in the array. As shown in this example, only the
values are displayed not the keys (subscripts).

each

returns the current key and value pair from an array and advances the array cursor

“After each() has executed, the array cursor will be left on the next element of the
array, or past the last element if it hits the end of the array. You have to use reset()
if you want to traverse the array again using each.”

Chapter 7 ■ PHP Functions—Searching, Traversing, and Displaying Arrays

129

Syntax:

array each (array &$array)

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
 'city' => 'Atlanta', 'state' => 'CA', 'zip_code' => 30001);

print_r(each($first_array));
print_r(each($first_array));

Output:

Array (
 [1] => Pete
 [value] => Pete
 [0] => first_name
 [key] => first_name
)

Array (
 [1] => Smith
 [value] => Smith
 [0] => last_name
 [key] => last_name
)

each will place the key from the current position in two different elements ([0] and [key]). It will also
place the value in two different elements ([1] and [value]). It will also move the cursor (location in the array)
to the next element. In this example, the key and value are pulled from the first position of the $first_name
array. Then the cursor is moved to the next element. The function is called again displaying the information
from the second element. The cursor is now positioned at the third element.

end

sets the internal pointer of an array to its last element

“end() advances array's internal pointer to the last element, and returns its value.”

Syntax:

mixed end (array &$array)

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
 'city' => 'Atlanta', 'state' => 'CA', 'zip_code' => 30001);

print current($first_array) . "
";
print next($first_array) . "
";

Chapter 7 ■ PHP Functions—Searching, Traversing, and Displaying Arrays

130

print prev($first_array) . "
";
print end($first_array) . "
";

Output:

Pete
Smith
Pete
30001

In this example, end moves the cursor to the last element and returns the value in the element. The ZIP
code is displayed.

key

fetches a key from an array

“The key() function simply returns the key of the array element that's currently
being pointed to by the internal pointer. It does not move the pointer in any way.”

Syntax:

mixed key (array &$array)

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'CA', 'zip_code' => 30001);

print key($first_array);

Output:

first_name

In this example, the array is currently at the top. key will display the key (subscript) at the current
position. This function will not move the cursor.

next

advances the internal array pointer of an array

“next() behaves like current(), with one difference. It advances the internal array
pointer one place forward before returning the element value. That means it
returns the next array value and advances the internal array pointer by one.”

Syntax:

mixed next (array &$array)

Chapter 7 ■ PHP Functions—Searching, Traversing, and Displaying Arrays

131

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
 'city' => 'Atlanta', 'state' => 'CA', 'zip_code' => 30001);

print current($first_array) . "
";
print next($first_array) . "
";
print prev($first_array) . "
";
print end($first_array) . "
";

Output:

Pete
Smith
Pete
30001

Next moves to the next element and displays it. In this example current displays the first value (Pete) but
does not advance to the next element. next advances to the next element and displays it (Smith).

pos

alias of current()

“The pos() function simply returns the value of the array element that's currently
being pointed to by the internal pointer. It does not move the pointer in any way. If
the internal pointer points beyond the end of the elements list or the array is empty,
pos() returns FALSE.”

Syntax:

mixed pos (array &$array)

Example:

$first_array = array('first_name' => 'Pete' ,
 'last_name' => 'Smith' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'CA', 'zip_code' => 30001);

print pos($first_array) . "
";
print next($first_array) . "
";
print prev($first_array) . "
";
print end($first_array) . "
";

Output:

Pete
Smith
Pete
30001

Chapter 7 ■ PHP Functions—Searching, Traversing, and Displaying Arrays

132

pos displays the current value but does not move to the next value. In this example pos will display Pete
from the first position but will not move the cursor to the next position. next moves to the next position and
displays the value (Smith).

prev

rewinds the internal array pointer

“prev() behaves just like next(), except it rewinds the internal array pointer one
place instead of advancing it.”

Syntax:

mixed prev (array &$array)

Example:

$first_array = array('first_name' => 'Pete' ,
 'last_name' => 'Smith' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'CA', 'zip_code' => 30001);

print pos($first_array) . "
";
print next($first_array) . "
";
print prev($first_array) . "
";
print end($first_array) . "
";

Output:

Pete
Smith
Pete
30001

In this example, pos displays the first value (Pete). next moves to the next value and displays it (Smith).
Prev moves back a position (back to the first position) and displays the value (Pete).

reset

sets the internal pointer of an array to its first element

“reset() rewinds array's internal pointer to the first element and returns the value of the first array element.”

Syntax:

mixed reset (array &$array)

Example:

$first_array = array('first_name' => 'Pete' ,
 'last_name' => 'Smith' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'CA', 'zip_code' => 30001);

print pos($first_array) . "
";
print next($first_array) . "
";
print reset($first_array) . "
";
print end($first_array) . "
";

Chapter 7 ■ PHP Functions—Searching, Traversing, and Displaying Arrays

133

Output:

Pete
Smith
Pete
30001

reset moves the pointer to the top of the array. In this example, pos returns value in the first element but does
not move the pointer. Next moves the pointer to the second element and then returns the value store in it.
reset moves back to the top of the array and returns the value in the first element. end is the reverse of reset; it
moves to the last position of the array and returns the value in that position.

7.3 � Displaying Array Contents
array_map

applies the callback to the elements of the given arrays

“array_map() returns an array containing all the elements of array1 after applying the
callback function to each one. The number of parameters that the callback function
accepts should match the number of arrays passed to the array_map()”

Syntax:

array array_map (callable $callback , array $array1 [, array $...])

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
 'city' => 'Atlanta', 'state' => 'GA', 'zip_code' => 30001);

function add_info($value)
{
 return("This value is " . $value);
}

print_r(array_map("add_info", $first_array));

Output:

Array (
 [first_name] => This value is Pete
 [last_name] => This value is Smith
 [address] => This value is 123 Main Street
 [city] => This value is Atlanta
 [state] =>This value is GA
 [zip_code] => This value is 30001
)

The function will apply changes to each element, as shown in the function passed (add_info), to the
array passed to produce a new array with the keys intact. In this example This value is is appended to the
value of each position in the array to produce a new array.

Chapter 7 ■ PHP Functions—Searching, Traversing, and Displaying Arrays

134

array_product

calculates the product of values in an array

“array_product() returns the product of values in an array.”

Syntax:

number array_product (array $array)

Example:

$product = array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

print array_product($product);

Output:

3628800

In this example will multiply:

1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 =
362880

array_rand

Pick one or more random entries out of an array

“Picks one or more random entries out of an array, and returns the key (or keys) of
the random entries.”

Syntax:

mixed array_rand (array $array [, int $num = 1])

Example:

$first_array = array('Pete' , 'Smith' ,
'123 Main Street' , 'Atlanta', 'GA', '30001');

print_r (array_rand($first_array, 2));

Output:

Array (
 [0] => 3
 [1] => 5
)

In this example array_rand picks the third element (Atlanta) and the fifth element (30001) because two
elements were requested.

Chapter 7 ■ PHP Functions—Searching, Traversing, and Displaying Arrays

135

array_reduce

iteratively reduces the array to a single value using a callback function

“array_reduce() applies iteratively the callback function to the elements of the
array, so as to reduce the array to a single value.”

Syntax:

mixed array_reduce (array $array , callable $callback [, mixed $initial = NULL])

Example:

$numerical_values =
array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

function add($value, $number)
{
 $value += $number;
 return $value;
}

function subtract($value, $number)
{
 $value -= $number;
 return $value;
}
function multiply($value, $number)
{
 $value *= $number;
 return $value;
}

function divide($value, $number)
{
 $value /= $number;
 return $value;
}

print array_reduce($numerical_values,
"add") . "
";
print array_reduce($numerical_values,
"subtract") . "
";
print array_reduce($numerical_values,
"multiply", -5) . "
";; // start with a $value of -5
print array_reduce($numerical_values,
"divide", 5) . "
"; //start with a $value of 5

Output:

55
-55
-18144000
1.3778659611993E-6

Chapter 7 ■ PHP Functions—Searching, Traversing, and Displaying Arrays

136

array_reduce allows you to create your own function to traverse through an array, pick each item, and do
something with the item. In these examples, functions are shown to add, subtract, multiply, and divide the
items in the array.

print array_reduce($numerical_values,
"multiply", -5) . "
";; // start with a $value of -5

This call starts with an initial value of –5 (which is placed in $value). The result (as seen in the
preceding) is a negative value.

print array_reduce($numerical_values,
"divide", 5) . "
"; //start with a $value of 5

This call starts with the 5 being placed into $value before each element value is divided.

array_sum

calculates the sum of values in an array

“Returns the sum of values as an integer or float.”

Syntax:

int array_sum(array $array)

Example:

$sum = array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

print array_sum($sum);

Output:

55

In this example the values in the array are added together.

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55

array_unique

removes duplicate values from an array

“Takes an input array and returns a new array without duplicate values.

Note that keys are preserved. array_unique() sorts the values treated as string
at first, then will keep the first key encountered for every value, and ignore all
following keys. It does not mean that the key of the first related value from the
unsorted array will be kept.”

Syntax:

array array_unique (array $array [, int $sort_flags = SORT_STRING])

Chapter 7 ■ PHP Functions—Searching, Traversing, and Displaying Arrays

137

Example:

$first_array = array('first_name' => 'Pete' ,
 'last_name' => 'Smith' , 'address' => '123 Main Street' ,
 'city' => 'Atlanta', 'state' => 'GA', 'zip_code' => 30001,
'first_name' => 'Sally' , 'lastname' => 'Parisi' ,
 'address' => '101 South Street' , 'city' => 'Atlanta' ,
 'state' => 'GA' , 'zipcode' => 30001);

print_r(array_unique($first_array));

Output:

Array (
 [first_name] => Sally
 [last_name] => Smith
 [address] => 101 South Street
 [city] => Atlanta
 [state] => GA
 [zip_code] => 30001
 [lastname] => Parisi
)

This function returns the first unique key for each value. In the example, one occurrence of each
key is returned.

array_values

returns all the values of an array

“Returns an indexed array of values.”

Syntax:

array array_values (array $array)

Example:

$first_array = array('first_name' => 'Pete' , 'last_name' => 'Smith' ,
 'address' => '123 Main Street' , 'city' => 'Atlanta', 'state' => 'CA',
'zip_code' => 30001);

print_r(array_values($first_array));

Output:

Array (
 [0] => Pete
 [1] => Smith
 [2] => 123 Main Street
 [3] => Atlanta
 [4] => CA
 [5] => 30001
)

Chapter 7 ■ PHP Functions—Searching, Traversing, and Displaying Arrays

138

array_values builds a numerical array of the values in the passed array. It does not retain the keys
(subscripts) from the original array.

array_walk_recursive

applies a user function recursively to every member of an array

“Applies the user-defined callback function to each element of the array. This
function will recurse into deeper arrays.”

Syntax:

bool array_walk_recursive (array &$array , callable $callback [, mixed $userdata = NULL])

Example:

$customer_record = array (
'first_customer' =>

array('first_name' => 'Pete' , 'last_name' => 'Smith' ,
'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'GA', 'zip_code' => 30001),

'second_customer' =>
array('first_name' => 'Sally' , 'last_name' => 'Parisi' ,
'address' => '101 South Street' ,
'city' => 'Atlanta' , 'state' => 'GA' , 'zip_code' => 30001)
);

function print_customer_info($value, $key)
{
 print " Customer $key is $value
";
}

array_walk_recursive($customer_record,
'print_customer_info');

Output:

Customer first_name is Pete
Customer last_name is Smith
Customer address is 123 Main Street
Customer city is Atlanta
Customer state is GA
Customer zip_code is 30001
Customer first_name is Sally
Customer last_name is Parisi
Customer address is 101 South Street
Customer city is Atlanta
Customer state is GA
Customer zip_code is 30001

Array_walk_recursive will apply anything within the programmer-supplied function to each key and
value in an array. As seen in this example, this function works well with multidimensional arrays.

Chapter 7 ■ PHP Functions—Searching, Traversing, and Displaying Arrays

139

array_walk

applies a user-supplied function to every member of an array

“array_walk() is not affected by the internal array pointer of array. array_walk()
will walk through the entire array regardless of pointer position.”

Syntax:

bool array_walk (array &$array , callable $callback [, mixed $userdata = NULL])

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
 'city' => 'Atlanta', 'state' => 'CA', 'zip_code' => 30001);

function print_customer_info($value, $key)
{
 print " Customer $key is $value
";
}

array_walk($first_array, 'print_customer_info');

Output:

Customer first_name is Pete
Customer last_name is Smith
Customer address is 123 Main Street
Customer city is Atlanta
Customer state is CA
Customer zip_code is 30001

Array_walk will apply anything within the programmer-supplied function to each key and value in the
array. This function works best with single arrays as shown in the example.

count

counts all elements in an array, or something in an object

“Returns the number of elements in array_or_countable. If the parameter is not an
array or not an object with implemented Countable interface, 1 will be returned.”

Syntax:

int count (mixed $array_or_countable [, int $mode = COUNT_NORMAL])

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'CA', 'zip_code' => 30001);

print count($first_array);

Chapter 7 ■ PHP Functions—Searching, Traversing, and Displaying Arrays

140

Output:

6

count returns the number of elements (size) of the array. In this example, there are six elements. See sizeof
for another example that can be used with count.

extract

imports variables into the current symbol table from an array

Syntax:

int extract (array &$array [, int $flags = EXTR_OVERWRITE [, string $prefix = NULL]])

Example:

$first_array = array('first_name' => 'Pete' ,
'last_name' => 'Smith' , 'address' => '123 Main Street' ,
'city' => 'Atlanta', 'state' => 'CA', 'zip_code' => 30001);

extract($first_array);

print "The first name is " . $first_name . ".
The last name is " . $last_name . ". The address is " .
$address . ". The city is " . $city . ". The state is " . $state .
". The zip is " . $zip_code . ".";

Output:

The first name is Pete. The last name is Smith. The address is 123 Main Street. The city is
Atlanta. The state is CA. The zip is 30001.

This function works with associative arrays. Variables (properties) are created using the key from the
array. The values in the array are then placed into the properties. In this example six properties are created
using the extract function.

sizeof

alias of count()

Syntax:

int sizeof (mixed $array_or_countable [, int $mode = COUNT_NORMAL])

Example:

$first_array = array('Pete' ,'Smith' ,
'123 Main Street' ,'Atlanta', 'CA', 30001);

$count = sizeof($first_array);

for($I=0; $I < $count; $I++)
{

 print $first_array[$I] . "
";

}

Chapter 7 ■ PHP Functions—Searching, Traversing, and Displaying Arrays

141

Output:

Pete
Smith
123 Main Street
Atlanta
CA
30001

sizeof will return the size of the array. Arrays are numbered starting at zero. The last position would be
one less than the value returned. Thus, the for loop used in the preceding continues until $I is no longer less
than the value in $count. Notice the example determines the size before the loop, instead of inside the for
loop. This provides only one execution of the sizeof function instead of calling it seven times in the preceding
example. See count for another example.

EXERCISES

1.	 Create a PHP program which contains an array of states in the United States. Use
one of the existing functions in this chapter to find any state that begins with “M.”

2.	 Create a PHP program which includes the array from #1; traverse and display the
contents of the array without using a loop.

3.	 Create a PHP program which includes the states and capitals of the United States.
Using one of the PHP functions from this chapter, display a message similar to the
following for each state:

“The capital of Georgia is Atlanta.”

Do not use any loops.

143© Steve Prettyman 2017
S. Prettyman, PHP Arrays, DOI 10.1007/978-1-4842-2556-1

APPENDIX A

Case Study—Playing Checkers

In this appendix we will look at the logic in creating a checkers game. The intent is to demonstrate the logical
need for an array to accomplish this mission. This example will provide several demonstrations on creating
and updating a two-dimensional array. Arrays are commonly used in game development. It is not the intent
of this example to provide the complete working code. There are many examples on the Web, if you are
interested in the complete solution.

	 1.	 What is the first thing we do when we play checkers? Open the box and lay the
board out on a table (Figure A-1).

Figure A-1.  Empty checkerboard

Logically this would map directly to the first logical step in creating a checkers game. A display_board
function could be designed to show the initial board. Each time the user makes a move, the board will need
to be redrawn to indicate a change in what is displayed. The display_board function would be called every
time the board must be redrawn. Since the location of checkers on the board continuously changes, there
needs to be a way to save these changes. As you can see from Figure A-1, the checkerboard has rows and
columns just like a two-dimensional array. We can use a two-dimensional array to represent the board and
its contents.

The board has eight columns and eight rows. Initially, the red and black colors alternate by column and
by row.

Appendix A ■ Case Study—Playing Checkers

144

Example A-1.  Checkerboard array

$checker_board = array (
array ("black", "red", "black", "red",
"black", "red", "black", "red"),
array ("red", "black", "red", "black",
"red" , "black", "red", "black"),
array ("black", "red", "black", "red",
"black", "red", "black", "red"),
array ("red", "black", "red", "black",
"red" , "black", "red", "black"),
array ("black", "red", "black", "red",
"black", "red", "black", "red"),
array ("red", "black", "red", "black",
"red" , "black", "red", "black"),
array ("black", "red", "black", "red",
"black", "red", "black", "red"),
array ("red", "black", "red", "black",
"red" , "black", "red", "black")
);

■■ Note  In Figure A-1, the red and black squares are reversed from Figure A-2. The arrays demonstrated are
related to the images discussed.

Figure A-2.  Checkerboard with pieces

Appendix A ■ Case Study—Playing Checkers

145

Once the array has been created, as shown, the display_board function can loop through the array and
display the proper board and color combinations using either a series of embedded if statements or a switch
statement.

Example A-2.  Display board function

function display_board() {
foreach($checker_board as $position) {
switch ($position) {
 case "red" :
 // display a red square or image
 break;
 case "black":
 // display a black square or image
 break;
 default:
 print "Error displaying board";
 break;
 }
}
}

The basic structure shown in the preceding will loop through each position in the array, determine the
color needed, and then display the color. Since there are many ways that the actual board image could be
created, this code it left to the reader to determine. If you are unsure of what to do, check the Internet for
suggestions.

	 2.	 After the player lays the board on a table, the pieces are then placed in their
proper positions (Figure A-2). In an application, this can be done by replacing
the positions in the array with the checker pieces.

The programmer could choose to start the game with the pieces already on the board, or require the
user to indicate they are ready to play (such as clicking a ‘start game’) button. We will assume that the player
must indicate they want to start a game (or a new game).

A start_game function could execute each time the ‘start game’ button is clicked. This function places
the checker pieces in the proper positions by updating the array containing the board, and then calling the
display_board function to show the board with the checker pieces. As we know, or can see from Figure A-2,
all pieces go on the black squares. For the white pieces, the first row pieces are in odd locations, the second
row is even (assuming zero if even), and the third row odd again. The red pieces work in reverse.

Example A-3.  Start game function

function start_game() {
for ($I=0; $I < 8; $I++) {
if(($I % 2 == 0)&& ($I != 4)) {
 for($J=1; $J < 8; $J = $J +2) {
 $checker_board[$I][$j] = ($J == 6) ?
 "red checker" : "white checker";
 }
 }
 else if(($I % 2 !=0) && ($I != 3)) {
 for($J=0; $J < 8; $J = $J + 2) {
 $checker_board[$I][$J] = ($J == 1) ?

Appendix A ■ Case Study—Playing Checkers

146

The outside for loop (containing $I) controls the rows. Then initial if statement uses $I to determine if
the row is even (again assuming that zero is even). If the row is even and not the empty row (4) then the first
$J for loop is called. This loop starts at column 1 (because a checker is not placed in column 0 on the 0 row)
and places a red or white checker in each black square on the board. If it is the sixth row a “red checker” is
placed. If it is any other row a “white checker” is placed.

■■ Suggestion E ither user a checkerboard or draw a checkerboard on paper and follow along with the logic
of these examples.

■■ Note  This example does not wipe out any checkers that may be in the “blank” rows. This could be
accomplished by coding a loop for the two rows involved and setting each useable position to “black.”

The else part of the if statement handles the odd-numbered rows. The logic is basically the same except
$I starts at 0 instead of 1. Also if the row is 1, then a “white checker” is placed in the position. Otherwise a
“red checker” is placed. It skips the third empty row.

After executing the start_game function, the array would now contain

Example A-4.  Checkerboard array after executing start game function

$checker_board = array (
 array ("red", "white checker", "red",
 "white checker", "red",
 "white checker", "red", "white checker"
 },
 array ("white checker", "red", "white checker", "red",
 "white checker" , "red", "white checker", "red"
),
 array ("red", "white checker", "red", "white checker",
 "red", "white checker", "red", "white checker"
 },
 array ("black", "red", "black", "red", "black" ,
 "red", "black", "red"
),
 array ("red", "black", "red", "black", "red",
 "black", "red", "black"
 },
 array ("red checker", "red", "red checker",
 "red", "red checker" ,
 "red", "red checker", "red"
),
 array ("red", "red checker", "red",
 "red checker", "red", "red checker",
 "red", "red checker"
 },
 array ("red checker", "red", "red checker",
 "red", "red checker" , "red",
 "red checker", "red"
)
);

Appendix A ■ Case Study—Playing Checkers

147

We will need to make some changes to the display_board function to handle the checkers.

Example A-5.  Display board function version 2

function display_board() {
foreach($checker_board as $position) {
switch ($position) {
 case "red" :
 // display a red square or image
 break;
 case "black" :
 // display a black square or image
 break;
 case "white checker" :
 // display a white square or checker image
 break;
 case "red checker" :
 // display a redish square or a checker image
 break;
 default:
 print "Error displaying board";
 break;
 }
}

We have added case procedures to handle the white and red checkers that now exist in the array. When
the start_game function now calls this display_board function, the board will display with the checkers in the
proper positions.

	 3.	 It is now time for one of our players to move a checker. Let’s only be concerned with
trying to move a piece, and not all the other factors that may affect our movement.
We can always add to a working function after we determine the basic moves.

Top of board

start

a x B

Using the preceding diagram, following the rules of checkers, if we want to move the ‘start’ white checker
(not yet a king), it can only move to position ‘a’ or ‘b’. All other positions are not valid. Notice that position ‘a’ is
one row more than ‘start’. Also notice that position ‘b’ is one more row than ‘start’. Thus, part of a valid move is
movement only to the next row (we are not concerned with jumps yet). The column of ‘a’ is one less than the
column of ‘start’. The column of ‘b’ is one more than the column of ‘start’. This indicates that a valid move is
also determined if the column move is one less or one more than the original column. Try this logic and you
will discover that this holds true for all moves from the top of the board toward the bottom of the board.

A x B

start

bottom of board

Appendix A ■ Case Study—Playing Checkers

148

If we want to move a ‘start’ red checker, it moves in the reverse direction. The valid moves are indicated
by positions ‘a’ and ‘b’. Notice that the valid columns, again, are either one more or one less than the column
of ‘start’. The only difference is that the row will be one less than the row of ‘start’. With the white ‘start’
checker it was one more.

In order to determine valid moves, we will need to collect the original position (row, column) of the
checker about to be moved, and the location that the user is attempting to move the checker. Then we will
need to make the comparison just described in the last couple of paragraphs.

■■ Note  We could do the following collection of information by creating objects for each position in the board.
However, to simplify this example, as much as possible, we will use a different technique.

If every black square on the board is a button, and every red square is just an image, we eliminate the
worry about the user trying to jump to a red square, or even outside the board itself. We just have to concern
ourselves with the restrictions already discussed.

Each black button will actually perform the same code, with one exception; the saving of its location in
the $checker_board array.

We can call a function from any of the buttons and pass the location in the array of that button.

make_move(3, 3);

Each button can pass the row and column of its location in the array into the make_move function.
The make_move function will then determine if this is the first click (selecting the checker) or second click
(indicating where the checker will move).

Example A-6.  Make move function

$first_click = false;
$first_row = -1; $first_column = -1;
$second_row = -1; $second_column = -1;
function make_move($row, $column) {
If ($first_click == false) { // first click
 $first_click = true;
 $first_row = $row;
 $first_column = $column;
}
else {
 // second move because $first_click is true
$first_click = false;
 // clears flag even if move is not valid to allow user to try again
$second_row = $row;
$second_column = $column;
valid_move($first_row, $first_column,
 $second_row, $second_column);
}
}

The make_move function must determine if it is the first click or second click. If it is the first click, the
$first_click flag is set to true. Then the row and column that were passed into the function are saved into
$first_row and $first_column. That is all that is needed with the first click. If it is a second click, then $first_click

Appendix A ■ Case Study—Playing Checkers

149

is set back to false, the values for the row and column are saved in $second_row and $second_column, and the
four row and column values are passed into a valid_move function.

Example A-7.  Valid move function (if statement)

function valid_move($first_row, $first_column,$second_row, $second_column)
{
 If (($checker_board[$first_row][$first_column] ==
 "white checker") &&
 (checker_board[$second_row][$second_column] ==
 "black"))
 {
 If(($second_row - $first_row == 1) &&
 (($second_column - $first_column == 1) ||
 ($second_column - $first_column == -1))
 {$checker_board[$second_row[$second_column] ==
 "white checker";
 $checker_board[$first_row][$first_column] =
 "black";
 }

The valid_move function must determine what type of checker we are moving to determine the direction.
If it is a white checker, we are moving from top to bottom. It must also make sure that the second clicked area
is empty (“black” square). The second row must be one more than the first row. The second column must
be one more or one less than the first column. If this is true, the “white checker” is placed in the array at the
location of the second click. The position of the first click is changed to be empty (“black” square).

Example A-8.  Valid move function (else statement)

 } else {
 If (($checker_board[$first_row] [$first_column] ==
 "red checker") &&
 ($checker_board[$second_row][$second_column] ==
 "black"))
 {
 If(($second_row - $first_row == -1) &&
 (($second_column - $first_column == 1) ||
 ($second_column - $first_column == -1))
 {
 $checker_board[$second_row][$second_column] ==
 "red checker";
 $checker_board[$first_row] [$first_column] =
 "black";
 }
 } // if both if statements fail it’s not a valid move
 }
display_board();
}

Appendix A ■ Case Study—Playing Checkers

150

If the red checker is moved and the second clicked area is empty (“black” square), the valid_move
function will determine if the second row selected is one less than the first row. It will also determine if the
column is one more or one less than the first column. If this is true, then the “red checker” is moved into the
array at the position of the second click. The first click position is set to empty (“black” square).

If any of the following happens, the function will not make a move.

	 a.	 The first click selected an empty space.

	 b.	 The second click selected an occupied space.

	 c.	 The second click did not select a proper square to move.

If a move is not made, the user can try again, because the $first_click flag was already set to false. The
board is redisplayed (display_board()) whether or not a move took place. If it did take place, the display_
board function will show the changes.

	 4.	 Let’s now consider the process of a checker becoming a “King.” This would occur
if a red checker reaches row 0 or a white checker reaches row 7. We can add some
if statements within our valid_move function to determine this situation. Also,
kings can move forward or backward. However, they still must follow the other
rules.

Example A-9.  Valid move function version 2 (if statement)

function valid_move($first_row, $first_column,$second_row, $second_column) {
 If (($checker_board[$first_row][$first_column] !=
 "red checker") &&
 (checker_board[$second_row][$second_column] ==
 "black")){
 If(($second_row - $first_row == 1) &&
 (($second_column - $first_column == 1) ||
 ($second_column - $first_column == -1))
 {
 If((second_row == 7) &&
 ($checker_board[$first_row][$first_column] ==
 "white checker"))
 {
 $checker_board[$second_row][$second_column] ==
 "white king";
 } else {
 $checker_board[$second_row][$second_column] ==
 $checker_board[$first_row][$first_column];
 }
 $checker_board[$first_row][$first_column] =
 "black";
 }
}

Instead of checking for a white checker, white king, or red king to allow movement down the board, it is
much shorter code to look for any object that is not a red checker. Only red checkers cannot move down the
board. However, when we check for row 7 to determine if we need to crown a checker, we also need to make

Appendix A ■ Case Study—Playing Checkers

151

sure it is a white checker in row 7. We can’t crown a red checker, and don’t need to crown a white or red king!
If we are not crowning a white checker, we are moving either a white checker, a white king, or a red king to a
new location. Since we don’t know what is moving we can take the value from the first clicked location and
copy it into the second clicked location. This will move the proper item.

Example A-10.  Valid move function version 2 (else statement)

} else {
 If (($checker_board[$first_row][$first_column] !=
 "white checker") &&
 ($checker_board[$second_row][$second_column] ==
 "black"))
 {
 If(($second_row - $first_row == -1) &&
 (($second_column - $first_column == 1) ||
 ($second_column - $first_column == -1))
 {
 If((second_row == 0) &&
 ($checker_board[$first_row][$first_column] ==
 "red checker"))
 {
 $checker_board[$second_row][$second_column] ==
 "red king";
 } else {
 $checker_board[$second_row][$second_column] ==
 $checker_board[$fiirst_row][$first_column];
 } // else
 $checker_board[$first_row][$first_column] =
 "black";
 } // end if $second_column - $first_column == -1
 } // not white checker –
 // if both if statements fail it’s not a valid move
}
display_board();
}

To move up the board, only a white checker is restricted. If a red checker reaches row 0, it is time to
become a “red king.” Now that we have movement down, we need to make an adjustment to our display_
board function to allow it to display “red kings” and “white kings.”

Example A-11.  Display board function version 2

function display_board() {
foreach($checker_board as $position) {
switch ($position) {
 case "red" :
 // display a red square or image
 break;
 case "black" :
 // display a black square or image
 break;

Appendix A ■ Case Study—Playing Checkers

152

 case "white checker" :
 // display a white square or checker image
 break;
 case "red checker" :
 // display a redish square or a
 //checker image
 break;
 case "white king" :
 // display a king color square king
 //checker image
 break;
 case "red king" :
 // display a king color square king
 //checker image
 break;
 default:
 print "Error displaying board";
 break;
 }
}

As you can see, it only became necessary to add two additional case statements for the “white king” and
the “red king.”

	 5.	 Of course, there is no way to win this game unless we can jump the opponent
and remove the piece from the board.

} // end if $second_column –
 //$first_column == -1
} // not white checker –
//if both if statements fail it’s not a valid move
}
display_board();
}

In the valid_move function, if the flow of the code falls between the last two brackets, it was not a valid
move. However, if might be a valid jump.

} else {// not white checker,
 //could it be a jump?
 valid_jump(($first_row, $first_column,$second_row,
 $second_column);
 }
}
display_board();
}

Appendix A ■ Case Study—Playing Checkers

153

Instead of adding more code within the valid_move function, it makes sense to instead create a valid_
jump function and call it if there was not a valid move.

Top of board

start

X ar X br

A x W x b

Two valid jumps for the white ‘start’ checker would land the checker on ‘a’ or ‘b’. One additional concern
is that a red checker or red king must exist in the ‘ar’ or ‘br’ positions or it is not a valid jump. Logically most
of this is similar to the move process. Looking at this example, a valid jump for a white checker’s row is two
more than the original row. The column of a valid jump is two less or two more than the original column. If
the checker jumps to ‘a’, we also need to check the position that is one less row and one more column than
position ‘a’ to make sure a red checker or red king exists. If the checker jumps to ‘b’, we need to check the
position that is one less row and one less column than position ‘b’ to make sure a red checker or red king
exists. If the jump is valid, the ‘start’ position changes to an empty square, the ‘ar’ (or ‘br’) position changes
to an empty square, and the ‘a’ position or ‘b’ position will now contain the item that did the jumping.

Example A-12.  Valid jump function (right side)

function valid_jump($first_row,
$first_column,
$second_row, $second_column) {
If (($checker_board[$first_row]
 [$first_column] !=
"red checker") &&
(checker_board[$second_row]
 [$second_column] ==
"black")){
If($second_row - $first_row == 2) {
If($second_column - $first_column == 2) {
 // right side jump attempted
 If((($checker_board[$first_row + 1]
 [$first_column + 1] !=
 "black") &&
 // not jumping empty space
 (substr($checker_board
 [$first_row +1]
 [$first_column + 1],0,3) !=
 Substr($checker_board
 [$first_row] [$first_column],0,3))
 // not jumping its own color
 {
 If((second_row == 7) &&
 ($checker_board[$first_row]
 [$first_column] ==
 "white checker")) {
 $checker_board
 [$second_row] [$second_column] ==
 "white king"; } else {

Appendix A ■ Case Study—Playing Checkers

154

 $checker_board[$second_row]
 [$second_column] ==
 $checker_board[$first_row]
 [$first_column]; }
 $checker_board[$first_row]
 [$first_column] == "black";
 $checker_board[$first_row + 1]
 [$first_column + 1] = "black";
 } // end not jump own checker
 //and not jump empty
 } // end right side jump attempted
 else {
 if ($second_column - $first_column == -2)) {
 // left side jump attempted
 If((($checker_board[$first_row + 1]
 [$first_column – 1] !=
 "black") && // not jumping empty space
 (substr($checker_board[$first_row +1]
 [$first_column – 1],0,3) !=
Substr($checker_board[$first_row]
 [$first_column],0,3))
// not jumping its own color
{
If((second_row == 7) &&
($checker_board[$first_row]
 [$first_column] ==
"white checker")) {
$checker_board[$second_row]
 [$second_column] ==
"white king"; } else {
$checker_board[$second_row]
[$second_column] ==
$checker_board[$first_row]
 [$first_column]; }
$checker_board[$first_row]
[$first_column)]== "black";
$checker_board[$first_row + 1]
[$first_column – 1] = "black";
} // end not jump own checker and not jump empty
} // end left side jump attempted
} // end jumped two rows
} // end not red and empty place to jump

Looking at this half of the required code, the logic (in order) that occurs is

	 1.	 If the checker is not red, it can make a jump down the board. The place it is
jumping to must also be empty (“black”).

	 2.	 If the jump is two rows more than the original position and two columns more
than the original position, then a right side of the board jump is being attempted.
(See #7 for left-side jump).

Appendix A ■ Case Study—Playing Checkers

155

	 3.	 If the checker did not jump over an empty (“black”) space and the checker did
not jump its own kind, then it is a valid jump. The code looks at the first three
characters to match “red” or “white” for both the checkers and kings.

	 4.	 Did the jumper checker land on row 7? If so, and the checker is white, then make
it a king. If not, move the checker from the first position to the second position.

	 5.	 Set the first position to empty (“black”).

	 6.	 Set the position jumped to black.

	 7.	 Did the checker jump two columns to the left? If so, it is attempting to jump on
the left side of the board.

	 8.	 Is the position jumped not empty (not “black”) and not the checker’s own type,
then the jump is valid.

	 9.	 Did the jumper checker land on row 7? If so, and the checker is white, then make
it a king. If not move the checker from the first position to the second position.

	 10.	 Set the first position to empty (“black”).

	 11.	 Set the position jumped to black.

Example A-13.  Valid jump function (left side)

else {
If (($checker_board[$first_row] [$first_column] !=
"white checker") &&
(checker_board[$second_row]
 [$second_column] ==
"black")){
 If($second_row - $first_row == -2) {
 If($second_column - $first_column == 2) {
 // right side jump attempted
If((($checker_board[$first_row – 1]
[$first_column + 1] !=
"black") && // not jumping empty space
(substr($checker_board[$first_row – 1]
 [$first_column + 1],0,3) !=
Substr($checker_board[$first_row]
[$first_column],0,3))
// not jumping its own color
{
If((second_row == 0) &&
($checker_board[$first_row]
 [$first_column] ==
"red checker")) {
 $checker_board[$second_row]
 [$second_column] ==
"red king"; } else {
$checker_board[$second_row]
[$second_column] ==
$checker_board[$first_row]
 [$first_column]; }

Appendix A ■ Case Study—Playing Checkers

156

$checker_board[$first_row]
[$first_column] == "black";
$checker_board[$first_row – 1]
 $first_column + 1] = "black";
} // end not jump own checker
// and not jump empty
} // end right side jump attempted
else {
if ($second_column - $first_column == -2)) {
// left side jump attempted
If((($checker_board[$first_row – 1]
[$first_column – 1] !=
"black") && // not jumping empty space
(substr($checker_board[$first_row -1]
[$first_column – 1],0,3) !=
Substr($checker_board[$first_row]
[$first_column],0,3))
// not jumping its own color
{
If((second_row == 0) &&
($checker_board[$first_row]
 [$first_column] ==
"white checker")) {
$checker_board[$second_row]
[$second_column] ==
"white king"; } else {
$checker_board[$second_row]
[$second_column] ==
$checker_board[$first_row]
 [$first_column]; }
$checker_board[$first_row]
[$first_column] == "black";
$checker_board[$first_row – 1]
 [$first_column – 1] = "black";
} // end not jump own checker and not jump empty
} // end left side jump attempted
} // end jumped two rows
} // end not white and empty place to jump

The else part of the main if statement handles the jumping from the bottom of the board toward the top
of the board. The logic is the same except for minor changes. The second row must be two less than the first
row (instead of two more). The changes required are highlighted.

There are no requirements to change in the display_board function to handle jumps because all
changes occur in how items are positioned in the array. There are no new items in the array.

A stated at the beginning of this appendix, the goal of these examples is to show the necessity of arrays,
especially in the gaming industry. There are more efficient ways to design this type of application with object
arrays and recursion. However, these techniques are beyond the scope of this book.

Appendix A ■ Case Study—Playing Checkers

157

To complete the coding of a checkers game, additional code would be required to enforce the following
rules and techniques.

	 1.	 A scoring ability must keep track of the number of checkers and be reduced
each time a checker is removed from the board. A player wins when all the
other opponents’ checkers are removed. However, a player also wins when the
opponent cannot make any other moves. This would require the program to look
at all possible moves a player can accomplish. A technique to keep track of the
number of wins for each player is needed.

	 2.	 A technique to keep players from trying to move when it is not their turn is
necessary.

	 3.	 Depending on the version of checkers, some versions do not allow checker
pieces to jump kings. Some versions do not allow checker pieces to jump at all.
The code shown does allow checker pieces to jump kings.

	 4.	 A recursion technique is needed to allow multiple jumps in the same turn.
Depending on the version of checkers, players may be required to jump if they
can. This would require coding to determine all possible jumps after the player
selects a piece to move.

159

�       � A, B
Arrays

advantages, 33
customer information, 32–33
elements, 35
foreach loop, 34
for loop, 34
html, 36–38
information and positions, 35
Java program, 34
JSON format, 35
personal information, 28
print statement, 30
process_customer.php, 29–30
property names, 27, 29
property values, 29
structure, 34
techniques, 35
updation and insertion, 38–40
validation methods, 31–32

Associative arrays
alphabetic subscripts, 62–63
customer_record array, 57, 60
deletion, 64
foreach loops, 63–64
language construct, 60
MySQL database, 60
numerical subscript, 59, 62
process_customer_record.php, 58
subscripts, 58–59
syntax, 62
try/catch block, 60
two-dimensional array, 59–60
updation and insertion, 64, 66–68
ZIP code information, 57

�       � C
Changing array contents

array_change_key_case, 75–76
array_fill, 76

array_fill_keys, 76–77
array_filter, 77–78
array_flip, 78
array_pad, 79
array_pop, 80
array_push, 80–81
array_shift, 81–82
array_unshift, 82
compact, 83
range, 83–84

Checkers game
black button, 148
bottom of board, 147
checkerboard array, 144
display_board function

version 2, 143, 145, 147, 150–152
empty checkerboard, 143
make_move function, 148
pieces, 145
positions, 148
rules, 147
start_game function, 145–146
structure, 145
valid_jump function, 153

left side, 155–157
right side, 153–155

valid_move function
else statement, 149
if statement, 149

valid_move function version 2
else statement, 151
if statement, 150

“white king” and the
“red king”, 152

Comparing arrays
array_diff, 105–106
array_diff_assoc, 101–102
array_diff_key, 102–103
array_diff_uassoc, 103–104
array_diff_ukey, 104–105
array_udiff, 108–109
array_udiff_assoc, 106–107

Index

© Steve Prettyman 2017
S. Prettyman, PHP Arrays, DOI 10.1007/978-1-4842-2556-1

■ INDEX

160

array_udiff_uassoc, 107–108
array_uintersect, 111–112
array_uintersect_assoc, 109
array_uintersect_uassoc, 110–111

�       � D
Displaying arrays

array_map, 133
array_product, 134
array_rand, 134
array_reduce, 135–136
array_sum, 136
array_unique, 136–137
array_values, 137–138
array_walk, 139
array_walk_recursive, 138
count, 139–140
extract, 140
sizeof, 140–141

�       � E, F, G
EasyPHP

Apache delays and hang-ups, 4
missing C# library, 3
missing files, 4
port conflicts, 3–4
program files directory, 4
resolving problems, 3
storage device, 2
testing, environment, 5
tools, 2

�       � H, I, J, K, L
Html arrays, 36–38

$customer_file, 47
$customer_record, 52
array_fill, 52
array_push method, 46
customer information, 45
errors, 48
exception object, 48
fetch_all method, 49
file_get_contents, 47
foreach loops, 50–52
JSON format, 47
MySQL database, 48–49
print statement, 50
process_customer_array_twodim.php, 46
process_customer_array_

twodim_saved_ex.php, 47–48

process_customer_array_twodim_
saved.php, 47

query command, 49
try/catch blocks, 48
two-dimensional arrays, 50
values, 46

�       � M, N
Merging arrays

array_combine, 112
array_intersect, 116–117
array_intersect_assoc, 112–113
array_intersect_key, 113–114
array_intersect_uassoc, 114–115
array_intersect_ukey, 115–116
array_merge, 118–120
array_merge_recursive, 117–118
array_replace, 121–122
array_replace_recursive, 120–121

Multi-dimensional arrays
counting variable, 43–44
customer records, 41
deletion, 53
dynamic approach, 43
flexibility, 45
html. html arrays
print_r method, 43
process_customer_twodim.php, 44
store information, 42
two-dimensional array, 43
updation and insertion, 54–56

�       � O
Object arrays

classes, 68
constructor method, 72–73
customer_record array, 73
exceptions, 69
games, 74
get method, 69
properties, 68
set methods, 69–70
structure, customer information, 72
var_dump, 73

�       � P, Q, R
PHP 7

Alias directories, 6
Apache server, 6–7
arithmetic operations, 10–11
arrays, 21–22

Comparing arrays (cont.)

■ INDEX

161

classes, properties
and objects, 22–25

components, 8
conditional statements, 12–16
editors, 7–8
for, while and foreach loops, 22
functions, 17–18, 20
“Hello World”, 8
html, css, and JavaScript code, 6–7
installation

Apache, 1
EasyPHP. EasyPHP
LAMP (Linux, Apache, MySQL, PHP), 2
MAMP (Mac, Apache, MySQL, PHP), 2
MySQL, 2
operating system, 1
tools, 1
WAMP (Windows, Apache, MySQL, PHP), 2

switch statement, 17
testing, environment, 5–6
try/catch blocks, 20
variables, 8–9

�       � S
Searching arrays

array_column, 124–125
array_count_values, 123–124
array_key_exists, 125–126
array_search, 126
key_exists, 127–128

Sorting arrays
array_multisort, 88–89
array_reverse, 89–90
arsort, 90–91
asort, 91–92
krsort, 92
ksort, 92–93
natcasesort, 93–94
natsort, 94
rsort, 94–95
shuffle, 95
sorts, 95–96
uasort, 96–97
uksort, 97–98
usort, 98–99

Splitting and slicing arrays
array_chunk, 85–86
array_slice, 86–87
array_splice, 87–88

�       � T, U, V, W, X, Y, Z
Traversing arrays

current, 128
each, 128–129
end, 129–130
key, 130
next, 130–131
pos, 131–132
prev, 132
reset, 132–133

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: PHP 7 Basics
	1.1 Installation
	1.2 EasyPhp
	1.2.1 Installing EasyPhp
	1.2.2 Resolving Problems
	1.2.3 Missing C# Library
	1.2.4 Port Conflicts
	1.2.5 Missing Files
	1.2.6 Can’t Install Files in Program Files Directory
	1.2.7 Apache Delays and Hang-ups

	1.3 Testing Your Environment
	1.3.1 Resolving Problems

	1.4 Alias Directories
	1.5 How It All Works
	1.6 Editors
	1.7 The Basic Syntax
	1.8 Conditional Statements
	1.9 Switch Statement
	1.10 Functions
	1.11 Try/Catch Blocks
	1.12 Arrays
	1.13 For, While, Foreach Loops
	1.14 Classes, Properties, Objects

	Chapter 2: Simple Arrays
	2.1 What Are Arrays? Why Do We Need to Use Them?
	2.1.1 Why Do We Have a Choice?

	2.2 Other Ways to Define Arrays
	2.3 Html Arrays
	2.3.1 Deleting

	2.4 Updating & Inserting

	Chapter 3: Multidimensional Arrays
	3.1 Html Arrays
	3.2 Deleting
	3.2.1 Updating & Inserting

	Chapter 4: Associative and Object Arrays
	4.1 Deleting
	4.1.1 Updating & Inserting

	4.2 Object Arrays

	Chapter 5: PHP Functions—Changing, Splitting, Slicing, and Sorting Arrays
	5.1 Changing Array Contents
	5.2 Splitting and Slicing Arrays
	5.3 Sorting Arrays

	Chapter 6: PHP Functions—Comparing and Merging Arrays
	6.1 Comparing Arrays
	6.2 Merging Arrays

	Chapter 7: PHP Functions—Searching, Traversing, and Displaying Arrays
	7.1 Searching Arrays
	7.2 Traversing Arrays
	7.3 Displaying Array Contents

	Case Study—Playing Checkers
	Index

